Discovery - University of Dundee - Online Publications

Library & Learning Centre

Error estimate of the P-1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations

Standard

Error estimate of the P-1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations. / Lu, Xiliang; Lin, Ping.

In: Numerische Mathematik, Vol. 115, No. 2, 2010, p. 261-287.

Research output: Contribution to journalArticle

Harvard

Lu, X & Lin, P 2010, 'Error estimate of the P-1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations' Numerische Mathematik, vol 115, no. 2, pp. 261-287.

APA

Lu, X., & Lin, P. (2010). Error estimate of the P-1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations. Numerische Mathematik, 115(2), 261-287doi: 10.1007/s00211-009-0277-8

Vancouver

Lu X, Lin P. Error estimate of the P-1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations. Numerische Mathematik. 2010;115(2):261-287.

Author

Lu, Xiliang; Lin, Ping / Error estimate of the P-1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations.

In: Numerische Mathematik, Vol. 115, No. 2, 2010, p. 261-287.

Research output: Contribution to journalArticle

Bibtex - Download

@article{55177605315348aaab135662c2375e8c,
title = "Error estimate of the P-1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations",
author = "Xiliang Lu and Ping Lin",
year = "2010",
volume = "115",
number = "2",
pages = "261--287",
journal = "Numerische Mathematik",
issn = "0029-599X",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Error estimate of the P-1 nonconforming finite element method for the penalized unsteady Navier-Stokes equations

A1 - Lu,Xiliang

A1 - Lin,Ping

AU - Lu,Xiliang

AU - Lin,Ping

PY - 2010

Y1 - 2010

N2 - <p>We consider a finite element method for the penalty formulation of the time dependent Navier-Stokes equations. Usually the improper choice of the finite element space will lead that the error estimate (inversely) depends on the penalty parameter epsilon. We use the classical P-1 nonconforming finite element space for the spatial discretization. Optimal epsilon-uniform error estimations for both velocity and pressure are obtained.</p>

AB - <p>We consider a finite element method for the penalty formulation of the time dependent Navier-Stokes equations. Usually the improper choice of the finite element space will lead that the error estimate (inversely) depends on the penalty parameter epsilon. We use the classical P-1 nonconforming finite element space for the spatial discretization. Optimal epsilon-uniform error estimations for both velocity and pressure are obtained.</p>

KW - SEQUENTIAL REGULARIZATION METHOD

KW - APPROXIMATION

KW - FORMULATION

KW - DYNAMICS

KW - FLOWS

U2 - 10.1007/s00211-009-0277-8

DO - 10.1007/s00211-009-0277-8

M1 - Article

JO - Numerische Mathematik

JF - Numerische Mathematik

SN - 0029-599X

IS - 2

VL - 115

SP - 261

EP - 287

ER -

Documents

Library & Learning Centre

Contact | Accessibility | Policy