Discovery - University of Dundee - Online Publications

Library & Learning Centre

SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage

SUMO-targeted ubiquitin E3 ligase RNF4 is required for the response of human cells to DNA damage

Research output: Contribution to journalArticle

View graph of relations

Authors

  • Yili Yin
  • Anne Seifert
  • Joy Shijia Chua
  • Jean-Francois Maure
  • Filip Golebiowski
  • Ronald T. Hay (Lead / Corresponding author)

Research units

Info

Original languageEnglish
Pages1196-1208
Number of pages13
JournalGenes & Development
Journal publication date1 Jun 2012
Volume26
Issue11
DOIs
StatePublished

Abstract

Here we demonstrate that RNF4, a highly conserved small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, plays a critical role in the response of mammalian cells to DNA damage. Human cells in which RNF4 expression was ablated by siRNA or chicken DT40 cells with a homozygous deletion of the RNF4 gene displayed increased sensitivity to DNA-damaging agents. Recruitment of RNF4 to double-strand breaks required its RING and SUMO interaction motif (SIM) domains and DNA damage factors such as NBS1, mediator of DNA damage checkpoint 1 (MDC1), RNF8, 53BP1, and BRCA1. In the absence of RNF4, these factors were still recruited to sites of DNA damage, but 53BP1, RNF8, and RNF168 displayed delayed clearance from such foci. SILAC-based proteomics of SUMO substrates revealed that MDC1 was SUMO-modified in response to ionizing radiation. As a consequence of SUMO modification, MDC1 recruited RNF4, which mediated ubiquitylation at the DNA damage site. Failure to recruit RNF4 resulted in defective loading of replication protein A (RPA) and Rad51 onto ssDNA. This appeared to be a consequence of reduced recruitment of the CtIP nuclease, resulting in inefficient end resection. Thus, RNF4 is a novel DNA damage-responsive protein that plays a role in homologous recombination and integrates SUMO modification and ubiquitin signaling in the cellular response to genotoxic stress.

Documents

Library & Learning Centre

Contact | Accessibility | Policy