Discovery - University of Dundee - Online Publications

Library & Learning Centre

The unfolded protein response is activated in skeletal muscle by high-fat feeding

The unfolded protein response is activated in skeletal muscle by high-fat feeding : potential role in the downregulation of protein synthesis

Research output: Contribution to journalArticle

View graph of relations

Authors

  • Louise Deldicque
  • Patrice D. Cani
  • Andrew Philp
  • Jean-Marc Raymackers
  • Paul J. Meakin
  • Michael L. J. Ashford
  • Nathalie M. Delzenne
  • Marc Francaux
  • Keith Baar

Research units

    Info

    Original languageEnglish
    PagesE695-E705
    Number of pages11
    JournalAmerican Journal of Physiology, Endocrinology and Metabolism
    Journal publication dateNov 2010
    Journal number5
    Volume299
    DOIs
    StatePublished

    Abstract

    Deldicque L, Cani PD, Philp A, Raymackers JM, Meakin PJ, Ashford ML, Delzenne NM, Francaux M, Baar K. The unfolded protein response is activated in skeletal muscle by high-fat feeding: potential role in the downregulation of protein synthesis. Am J Physiol Endocrinol Metab 299: E695-E705, 2010. First published May 25, 2010; doi: 10.1152/ajpendo.00038.2010.-High-fat diets are known to decrease muscle protein synthesis, the adaptation to overload, and insulin sensitivity. Conditions that disrupt endoplasmic reticulum (ER) homeostasis lead to the activation of the unfolded protein response (UPR) that is associated with decreases in protein synthesis, chronic inflammation, and insulin resistance. The purpose of the present study was to establish whether ER stress is induced by a high-fat diet in skeletal muscle and whether ER stress can decrease mTORC1 activity and protein synthesis in muscle cells. Two independent protocols of high-fat feeding activated the UPR in mice. In the first study, mice consuming a high-fat diet containing 70% fat and <1% carbohydrates for 6 wk showed higher markers of the UPR (BiP, IRE1 alpha, and MBTPS2) in the soleus and in the tibialis anterior muscles and ATF4 in the tibialis anterior (P < 0.05). In the second study, a 20-wk high-fat diet containing 46% fat and 36% carbohydrates also increased BiP, IRE1 alpha, and phospho-PERK protein and the expression of ATF4, CHOP, and both the spliced and unspliced forms of XBP1 in the plantar flexors (P < 0.05). In C2C12 muscle cells, tunicamycin, thapsigargin, and palmitic acid all increased UPR markers and decreased phosphorylation of S6K1 (P < 0.05). Collectively, these data show that a high-fat diet activates the UPR in mouse skeletal muscle in vivo. In addition, in vitro studies indicate that palmitic acid, and other well-known ER stress inducers, triggered the UPR in myogenic cells and led to a decrease in protein synthesis and mTORC1 activity.

    Documents

    Library & Learning Centre

    Contact | Accessibility | Policy