A Genome-Wide Association Study of IVGTT-Based Measures of First Phase Insulin Secretion Refines the Underlying Physiology of Type 2 Diabetes Variants

Wood, Andrew R; Jonsson, Anna; Jackson, Anne U.; Wang, Nan; van Leewen, Nienke; Palmer, Nicholette D.; Kobes, Sayuko; Deelen, Joris; Boquete-Vilarino, Lorena; Paananen, Jussi; Stanáková, Alena; Boomsma, Dorret I.; de Geus, Eco J. C.; Eekhoff, Elisabeth M. W.; Fritsche, Andreas; Kramer, Mark H. H.; Nijpels, Giel; Simonis-Bik, Annemarie M. C.; van Haeften, Timon W.; Mahajan, Anubha; Boehnke, Michael; Bergman, Richard N.; Tuomilehto, Jaakko; Collins, Francis S.; Mohlke, Karen L.; Banasik, Karina; Groves, Christopher J.; McCarthy, Mark I.; Pearson, Ewan R; Natali, Andrea; Mari, Andrea; Buchanan, Thomas A.; Taylor, Kent D.; Xiang, Anny H; Gjesing, Anette P.; Grarup, Niels; Eiberg, Hans; Pedersen, Oluf; Chen, Yii-Derr; Laakso, Markku; Norris, Jill M.; Smith, Ulf; Wagenknecht, Lynne E.; Baier, Leslie; Bowden, Donald W.; Hansen, Torben; Walker, Mark; Watanabe, Richard M.; ’t Hart, Leen M.; Hanson, Robert L.; Frayling, Timothy M.

Published in: Diabetes

DOI: 10.2337/db16-1452

Publication date: 2017

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
A genome-wide association study of IVGTT-based measures of first phase insulin secretion refines the underlying physiology of type 2 diabetes variants

Mechanisms of type 2 diabetes genetic risk factors

Andrew R Wood¹, Anna Jonsson²*, Anne U Jackson³*, Nan Wang⁴,⁵*, Nienke van Leewen⁶*, Nicholette D Palmer⁷, Sayuko Kobes⁸, Joris Deelen⁹, Lorena Boquete-Vilarino¹, Jussi Paananen¹⁰, Alena Stančáková¹⁰, Dorret I Boomsma¹¹, Eco JC de Geus¹¹, Elisabeth MW Eekhoff¹², Andreas Fritsche¹³,¹⁴,¹⁵, Mark Kramer¹², Giel Nijpels¹⁶, Annemarie Simonis-Bik¹², Timon W van Haeften¹⁷, Anubha Mahajan¹⁸, Michael Boehnke³, Richard N Bergman¹⁹, Jaakko Tuomilehto²⁰,²¹,²²,²³, Francis S Collins²⁴, Karen L Mohlke²⁵, Karina Banasik²,¹⁸,²⁶, Christopher J Groves²⁷, Mark I McCarthy¹⁸,²⁷,²⁸, DIRECT, Ewan R Pearson²⁹, Andrea Natali³⁰, Andrea Mari³¹, Thomas A Buchanan³,⁵,³², Kent D Taylor³³,³⁴, Anny H Xiang³⁵, Anette P. Gjesing², Niels Grarup², Hans Eiberg³⁶, Oluf Pedersen², Yi-Derr Chen³³, Markku Laakso³⁷, Jill M Norris³⁸, Ulf Smith³⁹, Lynne E Wagenknecht⁴⁰, Leslie Baier⁵, Donald W Bowden⁷§, Torben Hansen²§, Mark Walker⁴¹§, Richard M Watanabe⁴,⁵,³²§, Leen M ‘t Hart⁶,²¹,⁴²,⁴³§, Robert L Hanson⁸§, Timothy M Frayling¹§

*These authors contributed equally

Affiliations

1. Genetics of Complex Traits, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Royal Devon and Exeter Hospital, Barrack Road, Exeter EX2 5DW, UK
2. Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
3. Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
4. Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA USC
5. Diabetes and Obesity Research Institute, Keck School of Medicine of USC, Los Angeles, CA
6. Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, the Netherlands
7. Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC
8. Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ
9. Max Planck Institute for Biology of Ageing, Cologne, Germany
10. Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland

This is an author-created, uncopyedited electronic version of an article accepted for publication in Diabetes. The American Diabetes Association (ADA), publisher of Diabetes, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes in print and online at http://diabetes.diabetesjournals.org.
11. Department of Biological Psychology, VU University, Amsterdam, The Netherlands
12. Internal Medicine-Diabetes Center, VU University Medical Center, Amsterdam, the Netherlands.
13. Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University of Tübingen, Germany.
14. Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Germany.
15. German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.
16. Department of General Practice, EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
17. Department of Internal Medicine, Utrecht University Medical Center, Utrecht, The Netherlands
18. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
19. Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
20. Department of Health, National Institute for Health and Welfare, 00271 Helsinki, Finland
21. Dasman Diabetes Institute, Dasman, 15462 Kuwait
22. Department of Neuroscience and Preventive Medicine, Danube-University Krems, 3500 Krems, Austria
23. Saudi Diabetes Research Group, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
24. Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
25. Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA
26. Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
27. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
28. Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Churchill Hospital, Oxford OX3 7LE, UK
29. School of Medicine, University of Dundee, Dundee, UK
30. Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
31. Institute of Neuroscience, National Research Council, Padova, Italy
32. Department of Physiology & Biophysics, Keck School of Medicine of USC, Los Angeles, CA USC
33. Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA;
34. Department of Pediatrics, University of California Los Angeles, Los Angeles, CA
35. Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91107
36. Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
37. Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
38. Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO
39. The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
§ Corresponding Authors

Timothy M Frayling
Genetics of Complex Traits,
University of Exeter Medical School,
University of Exeter, UK
+44 (0) 1392 408256
t.m.frayling@exeter.ac.uk

Robert Hanson
Diabetes Epidemiology and Clinical Research Section,
National Institute of Diabetes and Digestive and Kidney Diseases,
National Institutes of Health,
1550 East Indian School Road,
Phoenix, AZ 85014, United States.
602-200-5207
rhanson@phx.niddk.nih.gov

Leen t’Hart
Leiden University Medical Center,
Department of Molecular Cell Biology,
Leiden, The Netherlands
+31 71 5269796
lmthart@lumc.nl

Richard Watanabe
Keck School of Medicine of USC,
Departments of Preventive Medicine and Physiology & Biophysics;
Diabetes and Obesity Research Institute of USC;
Los Angeles, CA, 90033
323-442-2053
rwatanab@usc.edu

Mark Walker
Institute of Cellular Medicine
Newcastle University, UK
+44 (0) 191 208 7019
mark.walker@newcastle.ac.uk

Torben Hansen
Novo Nordisk Foundation Center for Basic Metabolic Research,
Section of Metabolic Genetics,
Faculty of Health and Medical Sciences,
University of Copenhagen, Copenhagen.
torben.hansen@sund.ku.dk

Donald Bowden
Department of Biochemistry
Wake Forest School of Medicine
Winston-Salem, NC USA
336-713-7507
dbowden@wfubmc.edu

Word Count: 4,173
Tables: 5
Figures: 4
ABSTRACT

Understanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first phase insulin secretion, as measured by intravenous glucose tolerance tests, using up to 5,567 non-diabetic individuals from 10 studies. We aimed to refine the mechanisms of 178 known associations between common variants and glycaemic traits and identify new loci. Thirty type 2 diabetes, or fasting glucose raising, alleles were associated with a measure of first phase insulin secretion at \(P<0.05 \), and provided new evidence, or the strongest evidence yet, that insulin secretion, intrinsic to the islet cells, is a key mechanism underlying the associations at the \textit{HNF1A}, \textit{IGFBP2}, \textit{KCNQ1}, \textit{HNF1B}, \textit{VPS13C/C2CD4A}, \textit{FAF1}, \textit{PTPRD}, \textit{AP3S2}, \textit{KCNK16}, \textit{MAEA}, \textit{LPP}, \textit{WFS1} and \textit{TMPRSS6} loci. The fasting glucose raising allele near \textit{PDX1}, a known key insulin transcription factor, was strongly associated with lower first phase insulin secretion but has no evidence for an effect on type 2 diabetes risk. The diabetes risk allele at \textit{TCF7L2} was associated with a stronger effect on peak insulin response than on C-peptide-based insulin secretion rate, suggesting a possible additional role in hepatic insulin clearance or insulin processing. In summary, our study provides further insight into the mechanisms by which common genetic variation influences type 2 diabetes risk and glycaemic traits.
Common genetic variants associated with type 2 diabetes are more likely to be associated with insulin secretion than insulin resistance (1). Studies of genetic variation and insulin secretion have been largely limited to fasting glucose or oral glucose tolerance test (OGTT)-based measures of beta-cell function and insulin secretion (2; 3). Oral-based measures of insulin secretion do not distinguish between mechanisms involving gut hormone signaling, e.g. incretin pathways, and mechanisms intrinsic to islet cell function or mass.

Compared to OGTT-based measures, intravenous-based measures provide a more accurate measure of first phase insulin secretion, with initial release of insulin peaking in the first five to ten minutes following glucose stimulation. Intravenous measures include the intravenous glucose tolerance test (IVGTT) and hyperglycaemic clamp. Family studies have shown that first phase insulin response, as measured by IVGTT is one of the most highly heritable glycaemic measures (4-9), but genetic studies of intravenous-based measures of insulin secretion have examined limited numbers of variants or been performed in single studies (8; 10-14) with the exception of a recent meta-analysis performed in Hispanic Americans (15).

Two studies have examined the effects of known type 2 diabetes variants in large meta-analyses of studies with OGTT data. A study of 23,443 individuals with OGTT-based measures of insulin secretion and insulin resistance, with a subset of 4,180 individuals with clamp-based measures of insulin resistance, examined 36 known type 2 diabetes variants. This study classified 16 variants into groups: nine were labelled as “beta-cell”, two as “hyperglycaemia”, four as “insulin resistance” and one as “insulin processing” (based on proinsulin measures) (2). This analysis left 20 variants as “unclassified” which may include those that do not operate through these mechanisms as defined, or may reflect a lack of power to distinguish mechanisms when the type 2 diabetes risk effect is relatively weak. A second study performed a six-study genome-wide association study (GWAS) meta-analysis of OGTT-based measures of insulin secretion including the corrected insulin response (CIR;
insulin response corrected to glucose at 30 mins during an OGTT) (3). This study provided genome-wide data from 10,831 individuals and identified a signal in GRB10 but otherwise did not identify any variants not previously identified as type 2 diabetes variants.

Here we performed a meta-analysis based GWAS of intravenous-based measures of glucose stimulated insulin secretion. We used several measures of first phase insulin secretion with two aims - first, to refine the underlying physiology of known type 2 diabetes and glycaemic trait variants; second, to identify novel variants associated with first phase insulin secretion. Our study provides an advance to previous studies in several ways – first, it is the largest GWAS meta-analysis of intravenous-based measures of glucose stimulated insulin secretion.; second, we used imputation from the 1000 Genomes Project to capture a wider range of genetic variation than previous GWAS of glycaemic traits, and third, we focused on characterizing the most recent lists of known type 2 diabetes and glycaemic trait variants. Using more than 5,500 individuals with intravenous measures of first phase insulin secretion we show that most variants previously associated with insulin secretion, as measured by OGTT, operate through a primary islet cell-based mechanism and we provide new insight into the mechanisms of several variants where previous data had been unclear.
RESEARCH DESIGN AND METHODS

Study samples

The meta-analysis consisted of a total of 10 studies and a maximum of 5,567 individuals, with the full number available depending on the phenotype. These studies represented several different ethnic groups, with 3 studies of 2,346 Hispanic (IRASFS (16), TRIPOD (17), BETAGENE (18)), 6 studies of 2,900 individuals of European ancestry (EUGENE2 (19), RISC (20), Hyperglycemic clamp consortium (HCC) (13), YOUTH92 (21), FAMILY (21) and FUSION (22)) and one study of 332 Pima Indians (23). All studies were genotyped with a GWAS chip except the 413 HCC participants and a subset of 328 of 554 individuals from the FUSION study who were typed with the Metabochip (24). Full descriptive characteristics, study design, sample size, sample quality control (QC) and intravenous measurement techniques for studies included are provided in Supplementary Tables 1-3. All participants provided written informed consent and the studies were approved by the respective Local Research Ethics committees or Institutional Review Boards.

Phenotypes

The ten studies each used a version of the IVGTT test. FUSION, Youth92, FAMILY and TRIPOD used tolbutamide-modified IVGTTs, IRASFS and BETAGENE insulin-modified IVGTTs. In the RISC study, the IVGTT was conducted at the end of an isoglycemic clamp as previously reported (25).

In the HCC study, participants underwent a hyperglycemic clamp after an overnight fast. After the priming glucose bolus, blood glucose was measured at 2 to 2.5 minute intervals and kept constant at 10 mmol/l for at least two hours via continuous variable glucose infusions (13).
Peak insulin response

Peak insulin response was measured as peak insulin minus baseline insulin. The peak insulin time point was determined for each study, according to the time point having the highest average insulin value across all individuals.

Acute insulin response

Acute insulin response (AIR) was measured as the incremental area under the insulin curve during the first 10 minutes, or if a measure at 10 minutes was not available, during the first 8 minutes, using the trapezium equation (26), with a minimum of insulin values at 0, 2, 4, 6, and 8 minutes during the IVGTT. Incremental insulin was calculated by subtracting the fasting insulin level.

Insulin secretion rate

Insulin secretion rate (ISR) was estimated from measured serum C-peptide concentrations at 0, 2, 4, 6, 8 (RISC) and 0, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, and 19 (FAMILY) minutes, using the ISEC software (27; 28), which calculates the secretion rate based on predefined C-peptide kinetic parameters from each individual’s weight, height, age, sex and clinical status (glucose tolerance and obesity status) determined in a population-based study (29; 30). ISR provides an estimate of the rate of insulin secretion prior to hepatic insulin clearance.

Insulin sensitivity.

We used the MINMOD software (31) to calculate insulin sensitivity or a method suitable to the study (e.g. for Hyperglycaemic clamps see t’Hart et al. (13)).

Disposition index
Disposition index (DI) was calculated as the product of AIR and insulin sensitivity index calculated using the MINMOD software (31). DI differs from peak insulin response and AIR because it is not a pure test of insulin secretion but takes into account the level of background insulin resistance.

Oral glucose tolerance test measures of insulin secretion as a comparison

Corrected insulin response (CIR) was based on oral glucose tolerance tests. To compare IVGTT-based results to OGTT-based results we calculated the CIR in a subset of 2,523 individuals from five of our studies. Calculation was the same as that used and described by Prokopenko et al. : Corrected Insulin Response (CIR) = (100 x insulin at 30 min)/(glucose at 30 min x (glucose at 30 min−3.89)) (3).

Genotyping and imputation

Genotyping and imputation within studies

Details on the genotyping platform used and genotype quality control procedures employed for each study are presented in Supplementary Table 3. All GWAS cohorts were genotyped using commercially available Affymetrix (Affymetrix, Inc., Santa Clara, CA, USA), or Illumina (Illumina, Inc. San Diego, CA, USA) genotyping arrays. To facilitate meta-analyses for each trait, studies performed genotype imputation using MACH (32), MINIMAC (33), or IMPUTE (34) to impute up to a common set of variants. All studies (except the Pima study) imputed up to ~39M SNPs and indels from 2184 haplotypes available from the 1000 Genomes Project Phase 1 - version 3 (35)). Due to the relative difference in ancestry between the Pima cohort and the samples within the 1000 Genomes reference panel, imputation in Pima was based on 532 haplotypes derived from whole-genome sequencing efforts within the Pima study.
Metabochip genotyping

Additional studies genotyped on the Illumina Metabochip without subsequent imputation but with available phenotype data were also incorporated into the meta-analysis. Details of these studies can be found in **Supplementary Tables 1-3.**

Statistical analysis

Phenotype Transformations

Each trait was adjusted for age, sex, and study specific covariates as necessary (**Supplementary Table 2**) by adding them to a regression model and using the residuals as the phenotype. We then inverse normalized this residualised phenotype to create a normal distribution. This process is important to reduce false positive results when testing 1000s of rarer variants. Analyses were repeated adjusting for BMI and insulin sensitivity. To account for population stratification, studies also adjusted for principal components or if running association testing outside of a linear-mixed model framework.

Association analysis

Additive association analysis for each trait was carried out using MACH2QTL (32), SOLAR (for IRASFS) or using linear mixed models as implemented in EMMAX (36), GEMMA (37) or QTassoc (38) (**Supplementary Table 3**). For each trait and adjustment combination, we performed a fixed effects meta-analysis based on standard errors, as implemented in Metal [http://csg.sph.umich.edu/abecasis/Metal]. We applied a variant minor allele count (MAC) filter of MAC>5 and genomic control correction to the input files prior to meta-analysis. Variants with a meta-analysis \(P\)-value \(<5\times10^{-8}\) were considered to be genome-wide
significant. All genome-wide statistics are available on our website (url: http://www.t2diabetesgenes.org/data/).

Selection of known variants and previous traits

Type 2 diabetes

We selected 76 variants identified by GWAS as associated with type 2 diabetes. For European studies these were based on a GWAS+Metabochip meta-analysis of 34,840 cases and 114,981 controls (39) and for non-Europeans this included variants at GWAS significance across a trans-ethnic study meta-analysis of 26,488 cases and 83,964 controls (40).

Glycaemic and insulin related traits

We selected variants representing 65 signals listed in the supplementary or main tables of Prokopenko et al. (3) as associated with a glycaemic or insulin related trait, including fasting glucose, fasting insulin, 2-hour insulin, HbA1C, and proinsulin. We also selected an additional 5 variants associated with fasting glycaemic traits identified by an earlier meta-analysis that fell 250kb outside of the 65 signals (41).
RESULTS

Several variants are associated with intravenous-based measures of first phase insulin secretion at genome-wide significance, including MTNR1B and CDKAL1.

Results are represented in tables 1-5 and figures 1-4. The two strongest association signals represented known type 2 diabetes loci, those in or near MTNR1B and CDKAL1 (Table 1). The known signal at MTNR1B was associated with peak insulin response (P=1.3×10^{-24}), AIR (P=3.7×10^{-21}) and DI (P=3.3×10^{-17}), and CDKAL1 with peak insulin response (P=1.5×10^{-12}) and AIR (P=1.5×10^{-9}). The peak insulin and AIR results were very similar after adjusting for BMI and/or SI (Supplementary Table 4). In addition, we identified a few novel genome-wide associations that require further validation and replication - these associations were either rare variants (REG3G), only present in a specific ethnic group (CHST1) or sensitive to covariates used (BLVRA/MRPS24) (Supplementary Table 5). We tested these novel variants for an association with type 2 diabetes in the DIAbetes Genetics Replication and Meta-analysis (DIAGRAM) GWAS (40) but none of the SNPs were associated with type 2 diabetes at P<0.05.

Twenty-one known type 2 diabetes risk alleles are associated with lower first phase insulin response

Of 76 type 2 diabetes known risk alleles, 21 were associated (at P<0.05) with reduced first phase insulin secretion as measured by peak insulin response or acute insulin response (17 variants were associated with both peak insulin and AIR at P<0.05) (Table 1). Peak Insulin and AIR associations tended to be very similar for all variants (Table 1). This number of risk alleles associated with reduced insulin secretion at P<0.05 is far more than the 2-3 expected by chance. Three additional type 2 diabetes risk alleles were associated with higher first phase insulin response and these are discussed below [NOTCH2, PPARG and GCC1]. Results
were similar when adjusting for BMI and insulin sensitivity (Supplementary Table 4).

These 21 variants included 10 previously classified as having a clear role in insulin secretion - eight were previously classified as “beta-cell”, one as “hyperglycaemia” (MTN1RB) and one as “insulin processing” (ARAP1/STARD10) (2). We did not detect any evidence that the variant previously labelled as “beta-cell” in the THADA gene was associated with first phase insulin response. We were not able to account for the potential parent of origin effect at THADA (42), but neither were the previous largest OGTT-based studies. Of the eleven other variants we detected, those in the HNF1A, IGFBP2, KCNQ1 genes had previously been associated with at least one measure of insulin secretion or fasting glucose, and our data now strengthens the evidence that these variants increase type 2 diabetes risk through an insulin secretory mechanism including lower first phase insulin response. Our findings provide new evidence that type 2 diabetes variants in the loci labelled as in or near the HNF1B, VPS13C/C2CD4A, FAF1, PTPRD, AP3S2, KCNK16, MAEA and LPP genes alter type 2 diabetes risk through mechanisms that include first phase insulin secretion. Although none of these eight reached Bonferroni corrected levels of significance, we would only expect 2-3 of 76 type 2 diabetes risk alleles to be associated with lower insulin secretion at $P<0.05$, suggesting most of these eight variants operate through insulin secretion mechanisms (Table 1).

Six variants associated with higher fasting glucose but not type 2 diabetes, are associated with lower first phase insulin secretion.

We next examined 70 known variants associated with intermediate glycaemic traits. These traits consisted of those analysed by the Meta-Analysis of Glucose and Insulin Consortium (MAGIC) and included fasting glucose and insulin, proinsulin, HbA1c, and 2-hour post-OGTT glucose levels. These variants partially overlap those associated with type 2 diabetes.
We identified 6 variants not in the type 2 diabetes list where the fasting glucose raising allele was associated with first phase insulin secretion before (Table 2) and after correcting for BMI and insulin sensitivity (Supplementary Table 6). Fasting glucose raising alleles in or near the PDX1, DNLZ, CRY2, GLIS3, PROX1 and ADRA2A genes were associated with lower first phase insulin secretion at \(P<0.05 \). We next examined published data from the DIAGRAM consortium to establish whether or not these alleles were associated with type 2 diabetes but had not reached genome-wide significance – only the allele at PDX1 was not nominally associated with type 2 diabetes \((P>0.05) \) in Morris et al. \((39) \). All five of the other alleles associated with higher fasting glucose and lower first phase insulin were associated with a higher risk of type 2 diabetes with \(P \)-values of 0.03 (CRY2, Odds ratio (OR) 1.03), 0.001 (ADRA2A OR 1.06), 0.0001 (GLIS3 OR 1.04), 0.0001 (DNLZ OR 1.06) and \(1\times10^{-7} \) (PROX1 OR 1.06) \((39) \).

Ten known type 2 diabetes or glycaemic trait alleles are associated with lower insulin secretion rate

For a subset of 1,268 non-diabetic individuals we had a measure of insulin secretion rate by C-peptide deconvolution \((27; 30) \). For ten known variants, the type 2 diabetes or glycaemic trait risk allele was associated with lower insulin secretion rate at \(P<0.05 \). These analyses highlighted two variants that had no clear underlying physiological profile based on previous OGTT data or our own peak insulin response or AIR analyses – those in WFS1 and TMPRSS6 (Table 3). Of these ten variants previously associated with a glycaemic trait and associated with insulin secretion rate in our study, two were not known type 2 diabetes variants – those in TMPRSS6 (HbA1C raising allele associated with lower ISR) and PDX1 (fasting glucose raising allele associated with lower ISR). The TMPRSS6 allele, like the
PDX1 allele, was not nominally associated with type 2 diabetes in the DIAGRAM study (*P* > 0.05).

Sixteen variants where the type 2 diabetes risk allele is apparently paradoxically associated with higher insulin secretion or insulin secretion rates.

We identified sixteen variants with apparently paradoxical effects on type 2 diabetes risk, glycaemic traits, and first phase insulin secretion or insulin secretion rate. These included three (*PPARG, FTO, TET2*) with known primary effects on insulin resistance (43) or BMI and three (*ARAP1, PCSK1, MADD*) (44) with known primary effects on proinsulin. Whilst the effects on insulin secretion were similar when correcting for insulin resistance and BMI the associations with disposition index tended to be weaker (*Tables 4* and 5).
DISCUSSION

By performing a large genome-wide association study of first phase IVGTT-based insulin secretion we provide new insights into the likely mechanisms by which some of the known type 2 diabetes and glycaemic trait variants affect glucose homeostasis. Our results complement those from OGTT-derived measures of insulin secretion and emphasize the need to consider first phase, second phase and C-peptide derived measures of insulin secretion as well as insulin resistance when considering the likely function of type 2 diabetes associated alleles. We provide details of 178 previously described associations in supplementary table 8. We did not identify any robust associations between new variants and IVGTT-based measures of insulin secretion and so we focus this discussion on the known variants. The lack of novel variants is perhaps not surprising given the large studies of type 2 diabetes performed and relative power, and the likelihood that any variant with a strong effect on first phase insulin secretion is likely to have been associated with type 2 diabetes, or an OGTT-based measure of insulin secretion. Previous family studies have also shown strong genetic overlaps between OGTT-derived CIR and IVGTT-derived AIR (45).

Known type 2 diabetes risk alleles are associated with lower first phase insulin secretion in response to IV glucose.

We found that 21 of the alleles previously associated with higher type 2 diabetes risk are also associated with lower insulin secretion during IVGTT at $P<0.05$. Associations were similar with disposition index, which corrects for insulin sensitivity. Those with the strongest effects, and the only ones reaching genome-wide significance, were those in or near the $MTNR1B$ and $CDKAL1$ genes. In addition to classifications based on OGTT-derived measures (2), we can now also classify a number of previously unclassified loci as being involved in beta-cell function. These include $IGF2BP2$, $C2CD4A$, $FAF1$, $PTPRD$, $AP3S2$, $NF1B$, $MAEA$, $MAEA$.
KCNK16, and LPP. Of the nine variants previously labeled as “beta-cell” by Dimas et al., eight were associated with first phase insulin secretion, the exception being that in the THADA gene. Based on the analysis of Dimas et al., this variant is more likely to operate on fasting glucose rather than stimulated glucose tolerance.

A common allele upstream of PDX1 is associated with higher fasting glucose and lower first phase insulin secretion but not type 2 diabetes.

We identified six alleles that were associated with lower first phase insulin secretion that were previously associated with higher fasting glucose levels but were not associated, at genome-wide significance, with type 2 diabetes risk. These include those in or near PDX1, DNLZ, CRY2, GLIS3, PROX1 and ADRA2A genes. Five of these six variants are nominally associated with type 2 diabetes risk in the expected direction. The exception is the allele ~6.6kb upstream of PDX1, a gene in which mutations cause maturity onset diabetes of the young (46). This allele has the third strongest association with first phase insulin secretion in our study, after those in MTNR1B and CDKAL1, and ahead of those in known type 2 diabetes loci such as TCF7L2, SLC30A8, IGF2BP2, CDKN2A/B and HHEX/IDE, but was not associated with type 2 diabetes in the most recent, multi-ethnic, type 2 diabetes study of 26,488 cases and 83,964 controls. One explanation for this apparently paradoxical association is that the PDX1 allele causes a stable resetting of glucose tolerance but does not lead to deterioration in beta cell function, as is seen in MODY2. We also note that it is not associated with oral-based measures of insulin secretion (3).

Variants with apparently paradoxical effects on type 2 diabetes risk, glycaemic traits and first phase insulin secretion.

We identified 16 variants with an apparently paradoxical effect on at least one measure of insulin secretion and type 2 diabetes risk – the type 2 diabetes risk allele was associated with higher insulin secretion. Many of these associations were much weaker when using
disposition index rather than peak insulin or acute insulin response, suggesting the association with higher insulin secretion is a compensatory mechanism for higher background insulin resistance (FTO, PPARG) (43) or less efficient insulin processing (MADD, ARAP1, PSCK1) (44). The exceptions were the alleles in GRB10 and G6PC2, where correcting for insulin resistance or using disposition index did not appreciably weaken the association. At both these loci, previous studies have noted the paradoxical associations between the allele associated with higher fasting glucose and higher OGTT-based insulin secretion (3). It was also previously shown that the effect of the G6PC2 gene was dependent on glycaemia which may explain these apparent paradoxical results and suggest that effects of hyperglycemia may override genetic effects observed in healthy volunteers (47).

Known type 2 diabetes or glycaemic trait alleles associated with lower insulin secretion rate

For a subset of 1,268 non-diabetic individuals we had a measure of insulin secretion rate by C-peptide deconvolution, a measure of insulin secretion that accounts for hepatic insulin clearance (29; 30). Eighteen known variants were nominally associated with insulin secretion rate at P<0.05 – 10 where the type 2 diabetes or glycaemic trait risk allele was associated with lower insulin secretion rate, and 8 where the risk allele was associated with higher insulin secretion rate. These analyses highlighted two variants that had no clear underlying physiological profile based on previous data or our own peak insulin response or AIR analyses, those in WFS1 and TMPRSS6, although one large study had shown the WFS1 allele as associated with oral-based measures of insulin secretion (48). The statistical confidence of these associations was not strong and further studies are needed to confirm them. The diabetes risk alleles associated with higher insulin secretion rate are either likely to reflect the need for higher insulin secretion to remain non-diabetic given a primary effect on insulin
resistance (e.g. \textit{HMGA2}) or insulin processing (e.g. \textit{PCSK1}), or need further data to support the findings.

\textit{Alleles with disproportionate effects on different traits.}

We compared the effects of known variants across different traits (\textbf{Fig. 1-4}). Previous studies have highlighted that some known type 2 diabetes variants appear to have disproportionately small or large effects on type 2 diabetes risk compared to their effects on fasting glucose or insulin secretion (2). Here we highlight how measures of first phase insulin secretion help refine these comparisons. Several variants are noteworthy. First, our most notable finding is that of the common variant 6kb upstream of \textit{PDX1} which is the third most strongly associated locus with first phase insulin secretion (peak insulin) but there is no evidence it affects type 2 diabetes risk even in the latest very large type 2 diabetes case control study (40). Unlike the alleles in or near \textit{G6PC2} and \textit{GRB10}, the allele at \textit{PDX1} associated with lower insulin secretion and was also associated with higher fasting glucose. Second, the common variant in \textit{TCF7L2} appears to have a disproportionately small effect on first phase insulin secretion in response to IV glucose given its effect on type 2 diabetes and in comparison to other variants. This observation is consistent with the effect of this variant on OGTT-based measures of insulin secretion (2). There is emerging evidence that \textit{TCF7L2} influences diabetes risk through mechanisms involving multiple tissues (49-52), including a possible role on hepatic glucose production (53) in addition to direct effects at the pancreatic beta-cell (49; 52). One possibility is that the \textit{TCF7L2} risk allele also affects insulin clearance, a possibility consistent with our observation that the allele has a weaker effect on insulin secretion rate, (that uses C-peptide as the main measure of insulin secretion, and so excludes any effects on hepatic insulin clearance from the insulin secretion measure) than peak insulin response (\textbf{Fig. 3 & 4}). Another possibility is that the effect of the \textit{TCF7L2} risk allele on diabetes risk additionally depends on impaired incretin action (54; 55) and impaired proinsulin processing (56; 57),
mechanisms not directly assessed in the present study. Third, our data are also consistent with previous data on OGTT-based measures that show the variant at \textit{MTNIRB} has a disproportionately large effect on insulin secretion and fasting glucose levels compared to its effect on type 2 diabetes, possibly as a result of an additional effect on insulin action (58).

Our study had several strengths and limitations. Although our sample size of \(~5,500\) subjects is modest relative to previous OGTT-based measures, we have used the largest sample size yet for an intravenous-based measure of insulin secretion. Furthermore, we have characterised the most recent catalogue of variants associated with type 2 diabetes and glycaemic traits.

The limitations were that we had a mixed ancestry set of studies, although results in Europeans were very similar, suggesting that the known common variants have limited, if any, heterogeneous effects across different ethnic groups. Some of the associations we observed only reached nominal levels of statistical confidence, and further analyses are needed, ideally in even larger sample sizes, to characterize the approximately 50\% of known variants with no clear mechanism.

In conclusion, our study provides further insight into the mechanisms by which common genetic variation influences type 2 diabetes risk and glycaemic traits, and it further supports the notion that many established genetic variants for type 2 diabetes risk confer increased risk through an effect on beta-cell function.
ACKNOWLEDGEMENTS

T.M.F. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

A.R.W. and T.M.F. are supported by a European Research Council grant (SZ-245 50371-GLUCOSEGENES-FP7-IDEAS-ERC). R.L.H., S.K. and L. Baier are supported by the
Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases. This work was in part funded by the Innovative Medicines Initiative Joint Undertaking under grant agreement No. 115317 (DIRECT), resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (FP7/2007-2013), and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies’ in kind contribution (http://www.direct-diabetes.org/); the Netherlands Organization for Health Research and Development (Priority Medicines Elderly Program 113102006); The Netherlands Twin Register, part of the HCC cohort, is supported by the European Research Council (grant 230374), by BBMRI-NL, a Research Infrastructure financed by the Dutch government (NWO 184.021.007) and the Netherlands Organization for Scientific Research (grant NWO 480-04-004, NWO/SPI 56-464-14192). The RISC Study was supported by European Union grant QLG1-CT-2001-01252 and AstraZeneca. The initial genotyping of the RISC samples was funded by Merck & Co Inc. This research was supported by the National Institutes of Health: IRASFS (HL060944, HL061019, HL060919, and HG007112) and the GUARDIAN Consortium (DK085175). The provision of genotyping data was supported in part by UL1-TR-000124 (Clinical and Translational Science Institute) and DK063491. Computing resources were provided in part by the Wake Forest School of Medicine Center for Public Health Genomics. Support for FUSION was provided by NIH grants R01-DK062370 (to M.B.), R01-DK072193 (to K.L.M.), and intramural project number 1Z01-HG000024 (to F.S.C.). Genotyping was conducted by the Johns Hopkins University Genetic Resources Core Facility SNP Center at the Center for Inherited Disease Research (CIDR), with support from CIDR NIH contract no. N01-HG-65403.
REFERENCES

7. Sakul H, Pratley R, Cardon L, Ravussin E, Mott D, Bogardus C: Familiality of physical and metabolic characteristics that predict the development of non-insulin-dependent diabetes mellitus in Pima Indians. American journal of human genetics 1997;60:651-656

18. Watanabe RM, Allayee H, Xiang AH, Trigo E, Hartiala J, Lawrence JM, Buchanan TA: Transcription factor 7-like 2 (TCF7L2) is associated with gestational diabetes mellitus and interacts with adiposity to alter insulin secretion in Mexican Americans. Diabetes 2007;56:1481-1485

glucose-stimulated insulin release in European populations: results from the EUGENE2 study. Diabetes 2008;57:514-517

40. Replication DIG, Meta-analysis C, Asian Genetic Epidemiology Network Type 2 Diabetes C, South Asian Type 2 Diabetes C, Mexican American Type 2 Diabetes C, Type 2 Diabetes Genetic Exploration by Next-generation sequencing in mutli-Ethnic Samples C.

Table 1. Type 2 diabetes risk alleles associated with lower first phase insulin response, AIR and or peak insulin (P<0.05), from a total of 76 analysed. Betas represent per allele effects in standard deviations. Associations reaching Bonferroni equivalents of P<0.05 are emboldened.

<table>
<thead>
<tr>
<th>Locus</th>
<th>OGGT/fasting*</th>
<th>Lead SNP</th>
<th>Chr†</th>
<th>Position‡</th>
<th>Risk Allele</th>
<th>Peak insulin</th>
<th>Acute insulin response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta§</td>
<td>SE</td>
</tr>
<tr>
<td>MTNR1B</td>
<td>HG (1,2)</td>
<td>rs10830963</td>
<td>11</td>
<td>92,708,710</td>
<td>G</td>
<td>-0.235</td>
<td>0.023</td>
</tr>
<tr>
<td>CDKAL1</td>
<td>BC (1,2)</td>
<td>rs7756992</td>
<td>6</td>
<td>20,679,709</td>
<td>G</td>
<td>-0.152</td>
<td>0.022</td>
</tr>
<tr>
<td>HNF1A</td>
<td>UC (1,2)</td>
<td>rs12427353</td>
<td>12</td>
<td>121,426,901</td>
<td>G</td>
<td>-0.141</td>
<td>0.029</td>
</tr>
<tr>
<td>IGF2BP2</td>
<td>UC</td>
<td>rs4402960</td>
<td>3</td>
<td>185,511,687</td>
<td>T</td>
<td>-0.101</td>
<td>0.022</td>
</tr>
<tr>
<td>TCF7L2</td>
<td>BC (1)</td>
<td>rs7903146</td>
<td>10</td>
<td>114,758,349</td>
<td>T</td>
<td>-0.105</td>
<td>0.024</td>
</tr>
<tr>
<td>ARAP1 (CENTD2)</td>
<td>PROINS (2)</td>
<td>rs1552224</td>
<td>11</td>
<td>72,433,098</td>
<td>A</td>
<td>-0.128</td>
<td>0.030</td>
</tr>
<tr>
<td>SLC30A8</td>
<td>BC (1)</td>
<td>rs3802177</td>
<td>8</td>
<td>118,185,025</td>
<td>G</td>
<td>-0.089</td>
<td>0.022</td>
</tr>
<tr>
<td>ADCY5</td>
<td>BC (2)</td>
<td>rs11717195</td>
<td>3</td>
<td>123,082,398</td>
<td>T</td>
<td>-0.092</td>
<td>0.023</td>
</tr>
<tr>
<td>KCNQ1</td>
<td>UC (1,2)</td>
<td>rs163184</td>
<td>11</td>
<td>2,847,069</td>
<td>G</td>
<td>-0.075</td>
<td>0.020</td>
</tr>
<tr>
<td>C2CD4A</td>
<td>N/A (1,2)</td>
<td>rs7163757</td>
<td>15</td>
<td>62,391,608</td>
<td>C</td>
<td>-0.072</td>
<td>0.022</td>
</tr>
<tr>
<td>HHEX/IDE</td>
<td>BC (1)</td>
<td>rs1111875</td>
<td>10</td>
<td>94,462,882</td>
<td>C</td>
<td>-0.061</td>
<td>0.020</td>
</tr>
<tr>
<td>CDKN2A/B</td>
<td>BC (1)</td>
<td>rs10811661</td>
<td>9</td>
<td>22,134,094</td>
<td>T</td>
<td>-0.087</td>
<td>0.029</td>
</tr>
<tr>
<td>FAF1</td>
<td>N/A</td>
<td>rs17106184</td>
<td>1</td>
<td>50,909,985</td>
<td>G</td>
<td>-0.104</td>
<td>0.039</td>
</tr>
<tr>
<td>PTPRD</td>
<td>N/A (1)</td>
<td>rs17584499</td>
<td>9</td>
<td>8,879,118</td>
<td>T</td>
<td>-0.063</td>
<td>0.027</td>
</tr>
<tr>
<td>PROX1</td>
<td>BC</td>
<td>rs2075423</td>
<td>1</td>
<td>214,154,719</td>
<td>G</td>
<td>-0.050</td>
<td>0.022</td>
</tr>
<tr>
<td>Gene</td>
<td>Classification</td>
<td>rs ID</td>
<td>Chromosome Position</td>
<td>Allele</td>
<td>Beta (SE)</td>
<td>Beta (SE)</td>
<td>Beta (SE)</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-------</td>
<td>---------------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>AP3S2</td>
<td>N/A (2)</td>
<td>rs2028299</td>
<td>15 90,374,257</td>
<td>C</td>
<td>-0.057</td>
<td>0.026</td>
<td>0.026</td>
</tr>
<tr>
<td>HNF1B</td>
<td>UC (1)</td>
<td>rs4430796</td>
<td>17 36,098,040</td>
<td>G</td>
<td>-0.045</td>
<td>0.022</td>
<td>0.039</td>
</tr>
<tr>
<td>MAEA</td>
<td>N/A (2)</td>
<td>rs6815464</td>
<td>4 1,309,901</td>
<td>C</td>
<td>-0.059</td>
<td>0.031</td>
<td>0.060</td>
</tr>
<tr>
<td>KCNK16</td>
<td>N/A</td>
<td>rs1535500</td>
<td>6 39,284,050</td>
<td>T</td>
<td>-0.041</td>
<td>0.022</td>
<td>0.060</td>
</tr>
<tr>
<td>DGKB</td>
<td>BC</td>
<td>rs17168486</td>
<td>7 14,898,282</td>
<td>T</td>
<td>-0.044</td>
<td>0.024</td>
<td>0.061</td>
</tr>
<tr>
<td>LPP</td>
<td>N/A</td>
<td>rs6808574</td>
<td>3 187,740,523</td>
<td>C</td>
<td>-0.039</td>
<td>0.023</td>
<td>0.090</td>
</tr>
</tbody>
</table>

*Association (P<0.05) with OGTT based measure of insulin secretion or fasting glucose, as reported by (1) Prokopenko et al (CIR), (2) this study (CIR BMI+SI adjusted) and as Dimas et al classified: HG=hyperglycemic, BC=beta cell ,UC=unclassified, N/A=not available in Dimas et al; indicated according to their classification HG:
hyperglycaemic reduced beta-cell function after glucose stimulation, BC: defective beta-cell function, PROINS: decreased proinsulin, UC: unclassified. †Chromosome.
‡Base-pair position build-37. §Betas represent standard deviation effects per risk allele.
Table 2. Fasting glucose raising alleles associated with lower first phase insulin response but not identified as a type 2 diabetes risk allele. Betas represent per allele effects in standard deviations. Associations reaching Bonferroni equivalents of $P<0.05$ are emboldened.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Lead SNP</th>
<th>Chr*</th>
<th>Position†</th>
<th>Effect Allele</th>
<th>Peak insulin</th>
<th>Acute insulin response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta‡</td>
<td>SE</td>
</tr>
<tr>
<td>PDX1</td>
<td>rs11619319</td>
<td>13</td>
<td>28,487,599</td>
<td>G</td>
<td>-0.106</td>
<td>0.023</td>
</tr>
<tr>
<td>DNLZ</td>
<td>rs3829109</td>
<td>9</td>
<td>139,256,766</td>
<td>G</td>
<td>-0.088</td>
<td>0.022</td>
</tr>
<tr>
<td>CRY2</td>
<td>rs11607883</td>
<td>11</td>
<td>45,839,709</td>
<td>G</td>
<td>-0.047</td>
<td>0.020</td>
</tr>
<tr>
<td>GLIS3</td>
<td>rs10814916</td>
<td>9</td>
<td>4,293,150</td>
<td>C</td>
<td>-0.044</td>
<td>0.020</td>
</tr>
<tr>
<td>PROX1</td>
<td>rs340874</td>
<td>1</td>
<td>214,159,256</td>
<td>C</td>
<td>-0.041</td>
<td>0.020</td>
</tr>
<tr>
<td>ADRA2A</td>
<td>rs11195502</td>
<td>10</td>
<td>113,039,667</td>
<td>C</td>
<td>-0.069</td>
<td>0.035</td>
</tr>
</tbody>
</table>

*Chromosome. †Base-pair position build-37. ‡Betas represent standard deviation effects per risk allele.
Table 3. Known type 2 diabetes and glycaemic trait variants associated with insulin secretion rate (ISR). N = 1,268. Betas represent per allele effects in standard deviations. Associations reaching Bonferroni equivalents of $P<0.05$ are emboldened.

| Locus | Trait* | Classification† | Association Pattern‡ | Lead SNP | Chr§ | Position|| | Risk Allele | Beta¶ | SE | P-value |
|-----------|--------|-----------------|----------------------|------------|------|---------|--------|-----------|--------|-------|---------|
| MTNR1B | T2D / FG | HG | 1,2,3,4 | rs10830963 | 11 | 92,708,710 G | -0.232 | 0.043 | 9.01E-08 |
| CDKAL1 | T2D / FG | BC | 1,2,3,4 | rs7756992 | 6 | 20,679,709 G | -0.232 | 0.045 | 1.91E-07 |
| CDKN2A/B | T2D / FG | BC | 1,2,3 | rs10811661 | 9 | 22,134,094 T | -0.224 | 0.054 | 3.46E-05 |
| WFS1 | T2D | UC | 1,2,3 | rs4458523 | 4 | 6,289,986 G | -0.124 | 0.041 | 0.003 |
| SLC30A8 | T2D / FG | BC | 1,2,3 | rs3802177 | 8 | 118,185,025 G | -0.122 | 0.044 | 0.006 |
| TMPRSS6 | HbA1C | N/A | 1,2,3,4 | rs855791 | 22 | 37,462,936 A | -0.114 | 0.042 | 0.006 |
| PDX1 | FG | N/A | 1,2,4 | rs11619319 | 13 | 28,487,599 G | -0.129 | 0.049 | 0.008 |
| ANK1 | T2D | N/A | 1,2,3,4 | rs516946 | 8 | 41,519,248 C | -0.113 | 0.048 | 0.018 |
| HHEX/IDE | T2D | BC | 1,2,3 | rs1111875 | 10 | 94,462,882 C | -0.086 | 0.041 | 0.037 |
| IGF2BP2 | T2D / FG | UC | 1,2 | rs4402960 | 3 | 185,511,687 T | -0.091 | 0.044 | 0.037 |

*Associated trait: T2D=type 2 diabetes, FG=fasting glucose; †Classification by Dimas et al: HG=hyperglycemic, BC=beta cell, UC=unclassified, N/A=not available in Dimas et al; ‡Code relating to significance of association across phenotypes and datasets: 1=associated at $P<0.05$ with peak insulin in our data, 2=associated at $P<0.05$ with acute insulin response in our data, 3=associated with CIR in Prokopenko et al., 4=associated at $P<0.05$ with CIRBMI+SI adjustment in our data.

§Chromosome. ||Base-pair position build-37; ¶Betas represent standard deviation effects per effect allele.
Table 4. Apparently paradoxical associations between known glycaemic variants and first phase insulin secretion. Betas represent per allele effects in standard deviations. Associations reaching Bonferroni equivalents of \(P<0.05 \) are emboldened.

<table>
<thead>
<tr>
<th>Locus</th>
<th>Known Trait*</th>
<th>Lead SNP</th>
<th>Chr†</th>
<th>Position‡</th>
<th>Effect Allele</th>
<th>Peak insulin</th>
<th>Acute insulin response</th>
<th>DF¶</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta$ \pm $ SE</td>
<td>P-value (BMI+SI)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P-value (BMI+SI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P-value (BMI+SI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P-value (BMI+SI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P-value (BMI+SI)</td>
</tr>
<tr>
<td>G6PC2</td>
<td>FG</td>
<td>rs560887</td>
<td>2</td>
<td>169,763,148</td>
<td>C</td>
<td>0.061</td>
<td>0.024</td>
<td>0.012</td>
</tr>
<tr>
<td>GRB10</td>
<td>FG</td>
<td>rs6943153</td>
<td>7</td>
<td>50,791,579</td>
<td>T</td>
<td>0.069</td>
<td>0.021</td>
<td>8.47E-04</td>
</tr>
<tr>
<td>OR4S1/PTPRJ#</td>
<td>FG</td>
<td>rs1483121</td>
<td>11</td>
<td>48,333,360</td>
<td>G</td>
<td>0.114</td>
<td>0.036</td>
<td>0.002</td>
</tr>
<tr>
<td>MADD</td>
<td>Fproinsulin</td>
<td>rs10501320</td>
<td>11</td>
<td>47,293,799</td>
<td>G</td>
<td>0.084</td>
<td>0.029</td>
<td>0.003</td>
</tr>
<tr>
<td>PCSK1</td>
<td>Fproinsulin</td>
<td>rs6235</td>
<td>5</td>
<td>95,728,898</td>
<td>G</td>
<td>0.096</td>
<td>0.025</td>
<td>1.09E-04</td>
</tr>
<tr>
<td>PPARG</td>
<td>FI-adjBMI</td>
<td>rs17036328</td>
<td>3</td>
<td>12,390,484</td>
<td>T</td>
<td>0.096</td>
<td>0.029</td>
<td>9.42E-04</td>
</tr>
<tr>
<td>ARAP1</td>
<td>Fproinsulin</td>
<td>rs11603334</td>
<td>11</td>
<td>72,432,985</td>
<td>A</td>
<td>0.128</td>
<td>0.030</td>
<td>1.96E-05</td>
</tr>
<tr>
<td>FTO</td>
<td>BMI</td>
<td>rs1421085</td>
<td>16</td>
<td>53,800,954</td>
<td>C</td>
<td>0.038</td>
<td>0.022</td>
<td>0.084</td>
</tr>
<tr>
<td>GCC1</td>
<td>T2D</td>
<td>rs6467136</td>
<td>7</td>
<td>127,164,958</td>
<td>G</td>
<td>0.052</td>
<td>0.022</td>
<td>0.015</td>
</tr>
<tr>
<td>NOTCH2</td>
<td>T2D</td>
<td>rs10923931</td>
<td>1</td>
<td>120,517,959</td>
<td>T</td>
<td>0.066</td>
<td>0.032</td>
<td>0.039</td>
</tr>
</tbody>
</table>

*Trait previously associated with SNP. †Chromosome. ‡Base-pair position build-37. §Betas represent standard deviation effects per effect allele.¶P-value after BMI+SI adjustment.

FG=fasting glucose, Fproinsulin=fasting proinsulin, T2D=type 2 diabetes, FI-adjBMI=fasting insulin adjusted for BMI ¶DI = Disposition Index adjusted for BMI; #PTPRJ is the nearest non-olfactory receptor gene in the locus.
Table 5. Apparently paradoxical associations between known glycaemic variants and insulin secretion rate. Betas represent per allele effects in standard deviations.

| Locus | Trait* | Classification† | Association | Lead SNP | Chr‡ | Position||| Allele | Beta‡ | SE | P-value (BMI)# | P-value (BMI)# |
|-------------|--------|-----------------|-------------|----------|------|---------|-------|-------|--------|--------|----------------|-----------------|
| GRB10 | FG | N/A | 3 | rs6943153| 7 | 50,791,579 | T | 0.143 | 0.045 | 0.001 | 8.25E-04 | 0.018 |
| HMG20A | T2D | N/A | | rs7178572| 15 | 77,747,190 | G | 0.136 | 0.043 | 0.001 | 0.002 | 0.969 | |
| OR4S1/PTPRJ | FG | N/A | | rs1483121| 11 | 48,333,360 | G | 0.232 | 0.086 | 0.007 | 0.003 | 0.033 | |
| PCSK1 | Fproinsulin | N/A | | rs6235 | 5 | 95,728,898 | G | 0.108 | 0.044 | 0.015 | 0.02 | 0.013 | |
| TMEM163 | T2D | N/A | 2 | rs6723108| 2 | 135,479,980 | T | 0.094 | 0.042 | 0.024 | 0.03 | 0.854 | |
| ADAMTS9 | T2D | UC | | rs6795735| 3 | 64,705,365 | C | 0.088 | 0.040 | 0.028 | 0.02 | 0.428 | |
| IKBKAP | FG | N/A | | rs16913693| 9 | 111,680,359 | T | 0.246 | 0.117 | 0.036 | 0.05 | 0.404 | |
| KLHDC5 | T2D | N/A | | rs10842994| 12 | 27,965,150 | C | 0.104 | 0.050 | 0.038 | 0.04 | 0.291 | |
| TET2 | FI | N/A | | rs9884482| 4 | 106,081,636 | C | 0.082 | 0.041 | 0.048 | 0.03 | 0.788 | |

*Associated trait: FG=fasting glucose,Fproinsulin=fasting proinsulin,T2D=type 2 diabetes, FG=fasting glucose,FI=fasting insulin; †Classification by Dimas et al: UC=unclassified, N/A=not available; ‡Code relating to significance of association across phenotypes and datasets: 1=associated at $P<0.05$ with peak insulin in our data, 2=associated at $P<0.05$ with acute insulin response in our data, 3=associated with CIR in Prokopenko et al., 4=associated at $P<0.05$ with CIRBMI+SI adj in our data.
§Chromosome. ||Base-pair position build-37. ¶Betas represent standard deviation effects per effect allele; #P-value after ISR adjustment for BMI.
FIGURE LEGENDS

Figure 1. IVGTT (peak insulin response) based first phase insulin secretion versus OGTT based insulin secretion (corrected insulin response) for known type 2 diabetes variants. Units = standard deviation. Orange circles = SNP associated with both peak insulin response and CIR (P<0.05); green circles = SNP associated with peak insulin response (P<0.05); blue circles = SNP associated with CIR (P<0.05), yellow circles = SNP not associated with either trait (P>0.05).

Figure 2. Insulin secretion rate versus OGTT based insulin secretion (corrected insulin response) for known type 2 diabetes variants. Units = standard deviation. Orange circles = SNP associated with both ISR and CIR (P<0.05); green circles = SNP associated with ISR (P<0.05); blue circles = SNP associated with CIR (P<0.05), yellow circles = SNP not associated with either trait (P>0.05).

Figure 3. IVGTT (peak insulin response) based first phase insulin secretion versus type 2 diabetes risk (OR = Odds ratio), for known type 2 diabetes variants. Y-axis units = standard deviation. (Type 2 diabetes odds ratios are from Morris et al(39), and some were reported from previous studies of East Asians(59; 60). Orange circles = SNP associated with both peak insulin response and type 2 diabetes risk (P<0.05); green circles = SNP associated with peak insulin response (P<0.05); blue circles = SNP associated with type 2 diabetes risk (P<0.05), yellow circles = SNP not associated with either trait (P>0.05).

Figure 4. Insulin secretion rate versus type 2 diabetes risk for known type 2 diabetes variants. Y-axis units = standard deviation. Orange circles = SNP associated with both ISR and type 2
diabetes risk (P<0.05); green circles = SNP associated with ISR (P<0.05); blue circles = SNP associated with type 2 diabetes risk (P<0.05), yellow circles = SNP not associated with either trait (P>0.05).