Investigating the effect of phosphodiesterase inhibitors on human sperm motility and function

A. Rice

MSc

University of Dundee

September 2011
Contents

1. Development of Assisted Reproductive Technology (ART) ... 1
2. Causes of male infertility .. 3
3. Sperm motility .. 6
 3.1 Inhibition of motility .. 8
 3.2 Stimulation of motility – interfering with cAMP using PDE inhibitors 9
4. Sperm-oocyte interaction ... 18
5. Aims and objectives ... 20

Chapter 2: Investigating the effect of PDE-1 and PDE-4 specific inhibitors on human sperm motility ... 22

1. Introduction .. 22
2. Materials and Methods ... 24
 2.1 Sperm preparation .. 25
 2.2 Sperm-PDE inhibitor incubation .. 27
3. Results: Effect of PDE inhibitors on sperm motility .. 32
 3.1 Effect of PDE inhibitors on ‘healthy’ donor population 32
 3.2 Effect of PDE inhibitors on patient samples .. 36
4. Discussion .. 40

Chapter 3: Investigating the effects of PDE inhibitors using different sperm media, PDE inhibitor concentrations and longer incubation periods 42

1. Investigating the effect of PDE inhibitors using non-capacitating media 42
List of references .. 139
Appendix ...151
List of Figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1 ART and ICSI cycles performed 1999-2008</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2 Percent of transfers resulting in live birth</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3 Reasons for fertility treatment</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.4 Percent of transfers from ICSI cycles by reason for infertility</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1.5 Diagram demonstrating cAMP dependent pathway</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.1 Percent motile cells in 80% fraction of donor sperm with 8-MeOM-IBMX</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.2 Percent motile cells in 80% fraction donor sperm with Rolipram</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.3 Percent motile cells in 40% fraction donor sperm with 8-MeOM-IBMX</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.4 Percent motile cells in 40% fraction donor sperm with Rolipram</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.5 Percent motile cells in 40% fraction patient sperm with 8-8-MeOM-IBMX</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.6 Percent motile cells in 40% fraction patient sperm with Rolipram</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.1.1 Percent motile cells in 40% fraction patient sperm with 8-MeOM-IBMX in HEPES media</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.1.2 Percent motile cells in 40% fraction patient sperm with Rolipram media</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.2.1 Percent motile cells in 80% fraction donor sperm with 100µM 8-MeOM-IBMX over 8 hours</td>
<td>52</td>
</tr>
<tr>
<td>Figure 3.2.2 Percent motile cells in 80% fraction donor sperm with 200µM 8-MeOM-IBMX over 8 hours</td>
<td>53</td>
</tr>
</tbody>
</table>
Figure 3.2.3 Percent motile cells in 40% fraction donor sperm with 100µM 8-MeOM-IBMX over 8 hours. ... 54

Figure 3.2.4 Percent motile cells in 40% fraction donor sperm with 200µM 8-MeOM-IBMX over 8 hours ... 55

Figure 3.2.5 Percent motile cells in 40% fraction patient sperm with 100µM 8-MeOM-IBMX over 8 hours. ... 57

Figure 3.2.6 Percent motile cells in 40% fraction patient sperm with 200µM 8-MeOM-IBMX over 8 hours. ... 58

Figure 3.2.7 Percent motile cells in 40% fraction patient sperm with 10µM Rolipram over 8 hours. ... 59

Figure 3.3.1 Percent motile cells in 40% fraction patient sperm with 8-MeOM-IBMX and Rolipram ... 64

Figure 3.4.1 Percent motile cells in 40% fraction patient sperm with either 8-MeOM-IBMX or Rolipram after wash .. 68

Figure 4.1 Percent of live cells acrosome intact/reacted after addition of 8-MeOM-IBMX or Rolipram ... 76

Figure 4.2 Percent of cells with DNA damage after incubation with 8-MeOM-IBMX or Rolipram ... 83

Figure 5.1 Percent motile cells in 40% fraction patient sperm with Milrinone 89

Figure 5.2 Percent progressive cells in 40% fraction patient sperm with Milrinone ... 90

Figure 5.3 Percent motile cells in 40% fraction patient sperm with BRL 91

Figure 5.4 Percent progressive cells in 40% fraction patient sperm with BRL 92

Figure 5.5 Percent motile cells in 40% fraction patient sperm with Papaverine 93

Figure 5.6 Percent progressive cells in 40% fraction patient sperm with
Papaverine

Figure 5.7 Percent motile cells in 40% fraction patient sperm with BRL after
wash

Figure 6.1 Percent motile cells in 80% fraction IVF patient sperm with either
Rolipram or BRL

Figure 6.2 Percent motile cells in 80% fraction ICSI patient sperm with either
Rolipram or BRL

Figure 6.3 Percent progressive motile cells in 80% fraction IVF patient sperm with
Rolipram

Figure 6.4 Percent progressive motile cells in 80% fraction IVF patient sperm with
BRL

Figure 6.5 Percent progressive motile cells in 80% fraction ICSI patient sperm with
Rolipram

Figure 6.6 Percent progressive motile cells in 80% fraction ICSI patient sperm with
BRL

Figure 7.1.1 Sperm penetration test Part 1

Figure 7.1.2 Sperm penetration test Part 2

Figure 7.2.1 Sperm-zona pellucida binding

Figure 7.2.2 Dissected zona-pellucida

Figure 7.2.3 Sperm-zona pellucida magnified

Figure 7.2.4 Hemi-zona assay

Figure 7.2.5 Sperm-zona pellucida binding results (1)

Figure 7.2.6 Sperm-zona pellucida binding results (2)

Figure 7.2.7 Graph of sperm-zona pellucida binding results
List of Tables

Table 2.1 PDE Inhibitor concentrations .. 28
Table 2.2 Sperm motility parameters ... 29
Table 2.3 Effect of 8-MeOM-IBMX on donor/patient sperm 39
Table 2.4 Effect of Rolipram on donor/patient sperm 40
Table 4.1 Effect of PDE inhibitors on sperm acrosome 77
Table 5.1 Comparison of PDE inhibitor effects on sperm motility 95
Table 7.1 Effect of PDE inhibitor on sperm-zona pellucida binding 128
Table 8.1 Clinical effect of PTX .. 138
Acknowledgements

I would like to offer my most sincere gratitude to all the people who have helped me over the past two years. This includes everyone in the MACHS labs and the embryology team of Ninewells Hospital’s ACU.

I would like to thank Christopher Barratt for his enthusiasm, inspiration and support and Evelyn Barratt for her great efforts in consenting patients for this thesis.

I would especially like to thank Lead Clinical Embryologist Katherine Whalley for sharing lots of good ideas and allowing me to use the clinic’s laboratory and equipment for this thesis. Her encouragement and advice, (not to mention patience!) is greatly appreciated.

I also thank my Gran, my friends and Michael Quinn for all the support throughout the two years. Without their support this thesis would not have been possible.
Declaration

The data used in this thesis was gathered by me alone and I am the sole author of the text. I have personally cited all references and have not submitted this thesis previously for any other degree.

Name Anne Rice
Signed ..
Abstract

Assisted reproductive technologies (ART) have rapidly progressed through the years and it is becoming increasingly apparent that the main cause of infertility is male factor. Today, ICSI represents most treatment which itself demonstrates the severity of male infertility. This may include problems with sperm concentration, motility and/or morphology. Sperm motility defects are associated with most cases of male infertility and provide problems for sperm reaching, binding to and penetrating the oocyte therefore impacting on fertilisation success.

Improving motility of human sperm has previously been investigated using various PDE inhibitors. PDE inhibitors have been shown to enhance sperm motility and studies have associated this with predicting an increase in IVF rates. Enhancing sperm motility increases the probability of a successful result. With the use of PDE inhibitors it may also be possible to improve sperm function. This includes enabling sperm to bind to the zona-pellucida of human oocytes, a technique that is closely correlated with predicting IVF outcome.

This study investigates the effect of various PDE inhibitors on human sperm motility of samples from both fertile and sub-fertile men. This is done using CASA throughout to record motile and progressively motile cells. Experiments were carried out on various PDE inhibitors, some of which have previously been reported as having an effect on sperm motility and some which have never been investigated before. The study then goes on to investigate the effect of PDE inhibitors on sperm function of samples from sub-fertile men. This includes a sperm penetration test to
determine whether PDE inhibitors allow sperm to penetrate a viscous substance more easily, mimicking the in-vivo action of penetrating cervical mucus in the female reproductive tract. Lastly, this study explores the effect of PDE inhibitors on the ability of sperm from sub-fertile men to bind to the zona-pellucida of human oocytes. This study is a novel approach in the clinical investigation of PDE inhibitors in the human sperm-oocyte interaction stage of fertilisation.