THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Nuclear hormone receptors

Stephen PH Alexander1, John A Cidlowski2, Eamonn Kelly3, Neil V Marrion3, John A Peters4, Elena Faccenda5, Simon D Harding5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators

1 School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
2 National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
3 School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
4 Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
5 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK

Abstract
The Concise Guide to PHARMACOLOGY 2017/18 provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13880/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

Conflict of interest
The authors state that there are no conflicts of interest to declare.

© 2017 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Overview: Nuclear receptors are specialised transcription factors with commonalities of sequence and structure, which bind as homo- or heterodimers to specific consensus sequences of DNA (response elements) in the promoter region of particular target genes. They regulate (either promoting or repressing) transcription of these target genes in response to a variety of endogenous ligands. Endogenous agonists are hydrophobic entities which, when bound to the receptor promote conformational changes in the receptor to allow recruitment (or dissociation) of protein partners, generating a large multiprotein complex.

Two major subclasses of nuclear receptors with identified endogenous agonists can be identified: steroid and non-steroid hormone receptors. Steroid hormone receptors function typically as dimeric entities and are thought to be resident outside the nucleus in the unliganded state in a complex with chaperone proteins, which are liberated upon agonist binding. Migration to the nucleus and interaction with other regulators of gene transcription, including RNA polymerase, acetyltransferases and deacetylases, allows gene transcription to be regulated. Non-steroid hormone receptors typically exhibit a greater distribution in the nucleus in the unliganded state and interact with other nuclear receptors to form heterodimers, as well as with other regulators of gene transcription, leading to changes in gene transcription upon agonist binding.

Selectivity of gene regulation is brought about through interaction of nuclear receptors with particular consensus sequences of DNA, which are arranged typically as repeats or inverted palindromes to allow accumulation of multiple transcription factors in the promoter regions of genes.
1A. Thyroid hormone receptors
Nuclear hormone receptors → 1A. Thyroid hormone receptors

Overview: Thyroid hormone receptors (TRs, nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [41]) are nuclear hormone receptors of the NR1A family, with diverse roles regulating macronutrient metabolism, cognition and cardiovascular homeostasis. TRs are activated by thyroxine (T4) and thyroid hormone (triiodothyronine). Once activated by a ligand, the receptor acts as a transcription factor either as a monomer, homodimer or heterodimer with members of the retinoid X receptor family. NH-3 has been described as an antagonist at TRs with modest selectivity for TRβ [110].

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Thyroid hormone receptor-α</th>
<th>Thyroid hormone receptor-β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR1A1</td>
<td>NR1A2</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>THR, P10827</td>
<td>THR, P10828</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>triiodothyronine > T4</td>
<td>triiodothyronine > T4</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>–</td>
<td>sobetirome [26, 130]</td>
</tr>
</tbody>
</table>

Comments: An interaction with integrin αVβ3 has been suggested to underlie plasma membrane localization of TRs and non-genomic signalling [8]. One splice variant, TRα2, lacks a functional DNA-binding domain and appears to act as a transcription suppressor. Although radioligand binding assays have been described for these receptors, the radioligands are not commercially available.

Further reading on 1A. Thyroid hormone receptors

1B. Retinoic acid receptors

Nuclear hormone receptors → 1B. Retinoic acid receptors

Overview: Retinoic acid receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [46]) are nuclear hormone receptors of the NR1B family activated by the vitamin A-derived agonists tretinoin (ATRA) and alitretinoin, and the RAR-selective synthetic agonists TTNPB and adapalene. BMS493 is a family-selective antagonist [47].

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Retinoic acid receptor-α</th>
<th>Retinoic acid receptor-β</th>
<th>Retinoic acid receptor-γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR1B1</td>
<td>NR1B2</td>
<td>NR1B3</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>RARA, P10276</td>
<td>RARB, P10826</td>
<td>RARG, P13631</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>BM5753 [53], tamibarotene [146], Ro 40-6055 [33]</td>
<td>AC261066 [89], AC55649 [88, 89]</td>
<td>AHPN [24]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>Ro 41-5253 (pIC$_{50}$ 6.3–7.2) [2, 69]</td>
<td>–</td>
<td>MM 11253 [76]</td>
</tr>
</tbody>
</table>

Comments: Ro 41-5253 has been suggested to be a PPARγ agonist [129]. LE135 is an antagonist with selectivity for RARα and RARβ compared with RARγ [84].

Further reading on 1B. Retinoic acid receptors

1C. Peroxisome proliferator-activated receptors

Nuclear hormone receptors → 1C. Peroxisome proliferator-activated receptors

Overview: Peroxisome proliferator-activated receptors (PPARs, nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [101]) are nuclear hormone receptors of the NR1C family, with diverse roles regulating lipid homeostasis, cellular differentiation, proliferation and the immune response. PPARs have many potential endogenous agonists [13, 101], including 15-deoxy-D$_{12,14}$-PGJ$_2$, prostacyclin (PGI$_2$), many fatty acids and their oxidation products, lysophosphatidic acid (LPA) [98], 13-HODE, 15S-HETE, Paz-PC, azelaoyl-PAF and leukotriene B4 (LTB$_4$). Bezafibrate acts as a non-selective agonist for the PPAR family [155]. These receptors also bind hypolipidaemic drugs (PPARα) and anti-diabetic thiazolidinediones (PPARγ), as well as many non-steroidal anti-inflammatory drugs, such as sulindac and indomethacin. Once activated by a ligand, the receptor forms a heterodimer with members of the retinoid X receptor family and can act as a transcription factor. Although radioligand binding assays have been described for all three receptors, the radioligands are not commercially available. Commonly, receptor occupancy studies are conducted using fluorescent ligands and truncated forms of the receptor limited to the ligand binding domain.

Searchable database: http://www.guidetopharmacology.org/index.jsp

Nomenclature: Peroxisome proliferator-activated receptor-α (PPARα)
Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ)
Peroxisome proliferator-activated receptor-γ (PPARγ)

Systematic nomenclature:
NR1C1
NR1C2
NR1C3

HGNC, UniProt:
PPARA, Q07869
PPARD, Q03181
PPARG, P37231

Selective agonists:
GW7647 [17, 18], CP-775146 [67], piroxicam [155], gemfibrozil [31]

GW0742X [50, 148], GW501516 [112], GW1929 [17], bardoxolone (Partial agonist) [149],
rosiglitazone [59, 80, 86, 161], troglitazone [59, 161],
pioglitazone [7, 59, 127, 161], ciglitazone [59]

Selective antagonists:
GW6471 (pIC50 6.6) [158]
GSK0660 (pIC50 6.5) [131]

Comments: As with the estrogen receptor antagonists, many agents show tissue-selective efficacy (e.g. [12, 109, 124]). Agonists with mixed activity at PPARα and PPARγ have also been described (e.g. [35, 52, 159]).

Further reading on 1C. Peroxisome proliferator-activated receptors

1D. Rev-Erb receptors

Nuclear hormone receptors → 1D. Rev-Erb receptors

Overview: Rev-erb receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be officially paired with an endogenous ligand, but are thought to be activated by heme.

Nomenclature: Rev-Erb-α
Rev-Erb-β

Systematic nomenclature:
NR1D1
NR1D2

HGNC, UniProt:
NR1D1, P20393
NR1D2, Q14995

Endogenous agonists:
heme [121, 160]
heme [97, 121, 160]

Selective agonists:
GSK4112 [51], GSK4112 [70]

Selective antagonists:
SR8278 (pIC50 6.5) [70]

Searchable database: http://www.guidetopharmacology.org/index.jsp
1F. Retinoic acid-related orphans

Nuclear hormone receptors → 1F. Retinoic acid-related orphans

Overview: Retinoic acid receptor-related orphan receptors (ROR, nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be assigned a definitive endogenous ligand, although RORα may be synthesized with a ‘captured’ agonist such as cholesterol [65, 66].

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>RAR-related orphan receptor-α</th>
<th>RAR-related orphan receptor-β</th>
<th>RAR-related orphan receptor-γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR1F1</td>
<td>NR1F2</td>
<td>NR1F3</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>RORA, P35398</td>
<td>RORB, Q92753</td>
<td>RORC, P51449</td>
</tr>
<tr>
<td>Endogenous agonists</td>
<td>cholesterol [66, 114]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>7-hydroxycholesterol [14], cholesterol sulphate [14, 66]</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Comments: tretinoin shows selectivity for RORβ within the ROR family [136]. RORα has been suggested to be a nuclear receptor responding to melatonin [154].

Further reading on 1F. Retinoic acid-related orphans

1H. Liver X receptor-like receptors

Nuclear hormone receptors → 1H. Liver X receptor-like receptors

Overview: Liver X and farnesoid X receptors (LXR and FXR, nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [105]) are members of a steroid analogue-activated nuclear receptor subfamily, which form heterodimers with members of the retinoid X receptor family. Endogenous ligands for LXRs include hydroxycholesters (OHC), while FXRs appear to be activated by bile acids.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Farnesoid X receptor</th>
<th>Farnesoid X receptor-β</th>
<th>Liver X receptor-α</th>
<th>Liver X receptor-β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR1H4</td>
<td>NR1H5</td>
<td>NR1H3</td>
<td>NR1H2</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>NR1H4, Q96RI1</td>
<td>NR1H5P, –</td>
<td>NR1H3, Q13133</td>
<td>NR1H2, P55055</td>
</tr>
<tr>
<td>Endogenous agonists</td>
<td>–</td>
<td>lanosterol [113] – Mouse</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>GW4064 [94], obeticholic acid [116], fexaramine [36]</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>guggulsterone (pIC₅₀ 5.7–6) [157]</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Comments: T0901317 [122] and GW3965 [27] are synthetic agonists acting at both LXRα and LXRβ with less than 10-fold selectivity.

Further reading on 1H. Liver X receptor-like receptors

Courtney R et al. (2016) LXR Regulation of Brain Cholesterol: From Development to Disease. Trends Endocrinol Metab 27: 404-14 [PMID:27113081]
Moore DD et al. (2006) International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev 58: 742-59 [PMID:17132852]

Searchable database: http://www.guidetopharmacology.org/index.jsp
11. Vitamin D receptor-like receptors

Overview: Vitamin D (VDR), Pregnan X (PXR) and Constitutive Androstane (CAR) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [105]) are members of the NR1I family of nuclear receptors, which form heterodimers with members of the retinoid X receptor family. PXR and CAR are activated by a range of exogenous compounds, with no established endogenous physiological agonists, although high concentrations of bile acids and bile pigments activate PXR and CAR [105].

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Vitamin D receptor</th>
<th>Pregnan X receptor</th>
<th>Constitutive androstane receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR1I1</td>
<td>NR1I2</td>
<td>NR1I3</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>VDR, P11473</td>
<td>NR1I2, O75469</td>
<td>NR1I3, Q14994</td>
</tr>
<tr>
<td>Endogenous agonists</td>
<td>1,25-dihydroxyvitamin D3 [11, 39]</td>
<td>17β-estradiol [64]</td>
<td></td>
</tr>
<tr>
<td>Selective agonists</td>
<td>seocalcitol [28, 153], doxercalferol</td>
<td>hyperforin [106, 152], 5β-pregnan-3,20-dione [64], lovastatin [81], rifampicin [15, 81]</td>
<td></td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>TEI-9647 (pIC${50}$ 8.2) [126] – Chicken, ZK159222 (pIC${50}$ 7.5) [42, 60]</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Comments</td>
<td>–</td>
<td>–</td>
<td>clotrimazole [107] and T0901317 [68] although acting at other sites, function as antagonists of the constitutive androstane receptor.</td>
</tr>
</tbody>
</table>

Further reading on 11. Vitamin D receptor-like receptors

2A. Hepatocyte nuclear factor-4 receptors

Overview: The nomenclature of hepatocyte nuclear factor-4 receptors is agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]. While linoleic acid has been identified as the endogenous ligand for HNF4α its function remains ambiguous [163]. HNF4γ has yet to be paired with an endogenous ligand.
Nomenclature

- **Hepatocyte nuclear factor-4-α**
- **Hepatocyte nuclear factor-4-β**
- **Hepatocyte nuclear factor-4-γ**

Systematic nomenclature

- NR2A1
- NR2A2
- NR2B1
- NR2B2
- NR2B3

HGNC, UniProt

- HNF4A, P41235
- HNF4G, Q14541

Endogenous agonists

- Linoleic acid [163]

Selective antagonists

- Bl6015 [71]

Comments

HNF4α has constitutive transactivation activity [163] and binds DNA as a homodimer [63].

Further reading on 2A. Hepatocyte nuclear factor-4 receptors

2B. Retinoid X receptors

Nuclear hormone receptors → 2B. Retinoid X receptors

Overview: Retinoid X receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [45]) are NR2B family members activated by altretinoin and the RXR-selective agonists bexarotene and LG100268, sometimes referred to as rexinoids. UV13003 [108] and HX 531 [37] have been described as a pan-RXR antagonists. These receptors form RXR-RAR heterodimers and RXR-RXR homodimers [22, 96].

Nomenclature

- **Retinoid X receptor-α**
- **Retinoid X receptor-β**
- **Retinoid X receptor-γ**

Systematic nomenclature

- NR2B1
- NR2B2
- NR2B3

HGNC, UniProt

- RXRA, P19793
- RXRB, P28702
- RXRG, P48443

Sub/family-selective agonists

- Bexarotene [16, 21, 141]
- Bexarotene [16, 21, 141]
- Bexarotene [16, 21, 141]

Selective agonists

- CD3254 [48]
- CD3254 [48]
- CD3254 [48]
Further reading on 2B. Retinoid X receptors

2C. Testicular receptors

Nuclear hormone receptors → 2C. Testicular receptors

Overview: Testicular receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be officially paired with an endogenous ligand, although testicular receptor 4 has been reported to respond to retinoids.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Testicular receptor 2</th>
<th>Testicular receptor 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR2C1</td>
<td>NR2C2</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>NR2C1, P13056</td>
<td>NR2C2, P49116</td>
</tr>
<tr>
<td>Endogenous agonists</td>
<td>–</td>
<td>retinol [169], tretinoin [169]</td>
</tr>
<tr>
<td>Comments</td>
<td>Forms a heterodimer with TR4; gene disruption appears without effect on testicular development or function [132].</td>
<td>Forms a heterodimer with TR2.</td>
</tr>
</tbody>
</table>

Further reading on 2C. Testicular receptors

2E. Tailless-like receptors

Nuclear hormone receptors → 2E. Tailless-like receptors

Overview: Tailless-like receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be officially paired with an endogenous ligand.

Searchable database: http://www.guidetopharmacology.org/index.jsp
Further reading on 2E. Tailless-like receptors

2F. COUP-TF-like receptors

Overview: COUP-TF-like receptors (*nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]*) have yet to be officially paired with an endogenous ligand.

Further reading on 2F. COUP-TF-like receptors

3B. Estrogen-related receptors

Nuclear hormone receptors → 3B. Estrogen-related receptors

Overview: Estrogen-related receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be officially paired with an endogenous ligand.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Estrogen-related receptor-α</th>
<th>Estrogen-related receptor-β</th>
<th>Estrogen-related receptor-γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR3B1</td>
<td>NR3B2</td>
<td>NR3B3</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>ESRR\textsubscript{A}, P11474</td>
<td>ESRR\textsubscript{B}, O95718</td>
<td>ESRR\textsubscript{G}, P62508</td>
</tr>
<tr>
<td>Comments</td>
<td>Activated by some dietary flavonoids [138]; activated by the synthetic agonist GSK4716 [181] and blocked by XCT790 [156].</td>
<td>May be activated by DY131 [162].</td>
<td>May be activated by DY131 [162].</td>
</tr>
</tbody>
</table>

Further reading on 3B. Estrogen-related receptors

Divekar SD et al. (2016) Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance? Nucl Recept Signal 14: e002 [PMID:27507929]

4A. Nerve growth factor IB-like receptors

Nuclear hormone receptors → 4A. Nerve growth factor IB-like receptors

Overview: Nerve growth factor IB-like receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be officially paired with an endogenous ligand.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Nerve Growth factor IB</th>
<th>Nuclear receptor related 1</th>
<th>Neuron-derived orphan receptor 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR4A1</td>
<td>NR4A2</td>
<td>NR4A3</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>NR4A1, P22736</td>
<td>NR4A2, P43354</td>
<td>NR4A3, Q92570</td>
</tr>
<tr>
<td>Comments</td>
<td>An endogenous agonist, cytosporone B, has been described [164], although structural analysis and molecular modelling has not identified a ligand binding site [4, 40, 150].</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp
5A. Fushi tarazu F1-like receptors

Nuclear hormone receptors → 5A. Fushi tarazu F1-like receptors

Overview: Fushi tarazu F1-like receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be officially paired with an endogenous ligand.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Steroidogenic factor 1</th>
<th>Liver receptor homolog-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR5A1</td>
<td>NR5A2</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>NR5A1, Q13285</td>
<td>NR5A2, O00482</td>
</tr>
<tr>
<td>Comments</td>
<td>Reported to be inhibited by AC45594 [32] and SID7969543 [90].</td>
<td>–</td>
</tr>
</tbody>
</table>

Further reading on 5A. Fushi tarazu F1-like receptors

6A. Germ cell nuclear factor receptors

Overview: Germ cell nuclear factor receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be officially paired with an endogenous ligand.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Germ cell nuclear factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR6A1</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>NR6A1, Q15406</td>
</tr>
</tbody>
</table>

Further reading on 6A. Germ cell nuclear factor receptors

0B. DAX-like receptors

Overview: Dax-like receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [6]) have yet to be officially paired with an endogenous ligand.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>DAX1</th>
<th>SHP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR0B1</td>
<td>NR0B2</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>NR0B1, P51843</td>
<td>NR0B2, Q15466</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp
Further reading on OB. DAX-like receptors

Steroid hormone receptors

Overview: Steroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [30, 87]) are nuclear hormone receptors of the NR3 class, with endogenous agonists that may be divided into 3-hydroxysteroids (estrone and 17β-estradiol) and 3-ketosteroids (dihydrotestosterone [DHT], aldosterone, cortisol, corticosterone, progesterone and testosterone). These receptors exist as dimers coupled with chaperone molecules (such as hsp90β (HSP90AB1, P08238) and immunophilin FKBP52:FKBP4, Q02790), which are shed on binding the steroid hormone. Although rapid signalling phenomena are observed [83, 119], the principal signalling cascade appears to involve binding of the activated receptors to nuclear hormone response elements of the genome, with a 15-nucleotide consensus sequence AGAACAnnTGTTCT (i.e. an inverted palindrome) as homo- or heterodimers. They also affect transcription by protein-protein interactions with other transcription factors, such as activator protein 1 (AP-1) and nuclear factor κB (NF-κB). Splice variants of each of these receptors can form functional or non-functional monomers that can dimerize to form functional or non-functional receptors. For example, alternative splicing of PR mRNA produces A and B monomers that combine to produce functional AA, AB and BB receptors with distinct characteristics [145].

A 7TM receptor responsive to estrogen (GPER1, Q99527, also known as GPR30, see [118]) has been described. Human orthologues of 7TM ‘membrane progestin receptors’ (PAQR7, PAQR8 and PAQR5), initially discovered in fish [170, 171], appear to localize to intracellular membranes and respond to ‘non-genomic’ progesterone analogues independently of G proteins [134].

3A. Estrogen receptors

Overview: Estrogen receptor (ER) activity regulates diverse physiological processes via transcriptional modulation of target genes. The selection of target genes and the magnitude of the response, be it induction or repression, are determined by many factors, including the effect of the hormone ligand and DNA binding on ER structural conformation, and the local cellular regulatory environment. The cellular environment defines the specific complement of DNA enhancer and promoter elements present and the availability of coregulators to form functional transcription complexes. Together, these determinants control the resulting biological response.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Estrogen receptor-α</th>
<th>Estrogen receptor-β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR3A1</td>
<td>NR3A2</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>ESR1, P03372</td>
<td>ESR2, Q92731</td>
</tr>
<tr>
<td>Endogenous agonists</td>
<td>estriol [74], estrone [74]</td>
<td>–</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp
Nomenclature

Selective agonists

Sub/family-selective antagonists

Selective antagonists

Comments: R,R-THC exhibits partial agonist activity at ERα [99, 140]. Estrogen receptors may be blocked non-selectively by tamoxifen and raloxifene and labelled by [3H]17β-estradiol and [3H]tamoxifen. Many agents thought initially to be antagonists at estrogen receptors appear to have tissue-specific efficacy (e.g., tamoxifen is an antagonist at estrogen receptors in the breast, but is an agonist at estrogen receptors in the uterus), hence the descriptor SERM (selective estrogen receptor modulator) or SnuRM (selective nuclear receptor modulator). Y134 has been suggested to be an ERα-selective estrogen receptor modulator [111].

Further reading on 3A. Estrogen receptors

3C. 3-Ketosteroid receptors

Nuclear hormone receptors → Steroid hormone receptors → 3C. 3-Ketosteroid receptors

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Systematic nomenclature</th>
<th>Rank order of potency</th>
<th>Selective agonists</th>
<th>Selective antagonists</th>
<th>Labelled ligands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androgen receptor</td>
<td>NR3C4</td>
<td>dihydrotestosterone [142] > testosterone</td>
<td>testosterone propionate [95], mibolerone [49], fluoxymesterone [61], methyltrienolone [148], dromostanolone propionate</td>
<td>bicalutamide (pKα 7.7) [70], PF0998425 (pIC50 7.1–7.5) [85], enzalutamide (pIC50 7.4) [143], nilutamide (pIC50 7.1–7.7) [132], hydroxyflutamide (pIC50 6.6) [148], galeterone (pIC50 6.4) [56], flutamide (pKs 5.4) [147]</td>
<td>[3H]dihydrotestosterone (Selective Agonist), [3H]methyltrienolone (Selective Agonist), [3H]mibolerone (Agonist)</td>
</tr>
<tr>
<td>Glucocorticoid receptor</td>
<td>NR3C1</td>
<td>cortisol, corticosterone >> aldosterone, deoxycorticosterone [125]</td>
<td>fluticasone propionate [10], beclometasone [3], methylprednisolone [3], fluocinonide [3], betamethasone [3], budesonide [102]</td>
<td>onapristone (pIC50 7.6) [165], ZK112993</td>
<td>[3H]dexamethasone (Agonist)</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp
<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Mineralocorticoid receptor</th>
<th>Progesterone receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic nomenclature</td>
<td>NR3C2</td>
<td>NR3C3</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>NR3C2, P08235</td>
<td>PGR, P06401</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>corticosterone, cortisol, aldosterone [58, 125], progesterone [125]</td>
<td>progesterone [38]</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>–</td>
<td>medroxyprogesterone (Affinity at human PR-A) [166], ORG2058, levonorgestrel [9, 128]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>finerone (pC_{50} 7.7) [20], eplerenone (pK_i 6.9) [5], onapristone (pC_{50} 6.3) [165], RU28318, ZK112993</td>
<td>ulipristal acetate (pC_{50} 9.7) [123], mifepristone (Mixed) (pK_i 9) [167], onapristone (pK_i 7.7) [54], ZK112993</td>
</tr>
<tr>
<td>Labelled ligands</td>
<td>$[^{3}H]$aldosterone (Selective Agonist) [44, 137] – Rat</td>
<td>$[^{3}H]$ORG2058 (Selective Agonist)</td>
</tr>
</tbody>
</table>

Comments: $[^{3}H]$dexamethasone also binds to MR in vitro. PR antagonists have been suggested to subdivide into Type I (e.g. onapristone) and Type II (e.g. ZK112993) groups. These groups appear to promote binding of PR to DNA with different efficacies and evoke distinct conformational changes in the receptor, leading to a transcription-neutral complex [43, 82]. Mutations in AR underlie testicular feminization and androgen insensitivity syndromes, spinal and bulbar muscular atrophy (Kennedy’s disease).

Further reading on 3C. 3-Ketosteroid receptors

