Heerema developing Silent Foundation Concepts Technology in coordination with the University of Dundee

Press/Media: Research

Description

Heerema Marine Contractors and Heerema Fabrication Group are currently working with the University of Dundee's School of Science and Engineering on innovations that could significantly reduce or eliminate underwater noise pollution.

Heerema and partners are committed in introducing 'silent foundations', while understanding the considerable noise generated through pile driving during the installation of wind turbines, wind farm substations, convertor platforms and traditional oil and gas facilities.

The development of alternative pile foundations that could be installed without producing significant underwater noise is currently ongoing.

Silent Foundations Concepts

Two foundation concepts are under development, which are:

Push-in piles

The push-in pile design replaces a traditional single open tubular pile with a cluster of four smaller diameter open tubular piles.

This design can eliminate noise pollution as it requires no pile-driving or hammering - instead, after some strokes, each of the piles is pushed into the soil with two or three providing the uplift resistance required to push in the fourth.

This concept might sound complicated, but it uses a similar principle to onshore installations of sheet pile walls.

Large helical or screw piles

The helical pile foundation suits foundations that require shallow penetration in the seabed.

The pile has a helical blade at its tip rotated during installation to allow the pile to penetrate the soil.

This concept includes a moment arm that will connect to one of Heerema's vessels to provide the required reaction force.

Also, this pile is prepared for the future as by reversing the process, we can use it for removing foundations allowing low-cost decommissioning and full recycling or re-use of piles.

Testing and Modeling of Piles

The University of Dundee's School of Science and Engineering is carrying out a six-month testing and modeling program.

The researchers involved have considerable experience developing helical piles in previous research projects in collaboration with Durham University and the University of Southampton.

According to HMC, this program includes physically testing the piles using 3D-printed steel models in a geo-centrifuge, a device that simulates realistic soil stresses and installation conditions to match full-scale behavior using small models (1 to 100th scale).

In the centrifuge, the installation requirements (forces and torques) and the installed capacity of the piles and pile clusters can be tested and measured directly.

These tests complement the University of Dundee's ongoing research using discrete element method (DEM) modeling for varying soil conditions and pile designs.

By using this method, a complete evaluation of the installation process and in-place performance can be analyzed using a range of variables.

Their process replaces the millions of soil particles the pile would contact with on the seabed with larger balls with the same behavior as sand particles.

Using this approach of combining physical and numerical modeling helps with rapid development in a controlled environment where many impacts on pile behavior can be assessed.

HMC claimed that their testing program will reduce development costs when we move to full-scale tooling development and helps to de-risk future use of these low noise and sustainable foundation concepts.

Period30 Jun 2020

Media coverage

1

Media coverage

  • TitleHeerema developing Silent Foundation Concepts Technology in coordination with the University of Dundee
    Degree of recognitionInternational
    Media name/outletNauticus Live
    Media typeWeb
    Country/TerritoryUnited Kingdom
    Date30/06/20
    DescriptionHeerema Marine Contractors and Heerema Fabrication Group are currently working with the University of Dundee's School of Science and Engineering on innovations that could significantly reduce or eliminate underwater noise pollution.
    Heerema and partners are committed in introducing 'silent foundations', while understanding the considerable noise generated through pile driving during the installation of wind turbines, wind farm substations, convertor platforms and traditional oil and gas facilities.
    The development of alternative pile foundations that could be installed without producing significant underwater noise is currently ongoing.
    Silent Foundations Concepts
    Two foundation concepts are under development, which are:
    Push-in piles
    The push-in pile design replaces a traditional single open tubular pile with a cluster of four smaller diameter open tubular piles.
    This design can eliminate noise pollution as it requires no pile-driving or hammering - instead, after some strokes, each of the piles is pushed into the soil with two or three providing the uplift resistance required to push in the fourth.
    This concept might sound complicated, but it uses a similar principle to onshore installations of sheet pile walls.
    Large helical or screw piles
    The helical pile foundation suits foundations that require shallow penetration in the seabed.
    The pile has a helical blade at its tip rotated during installation to allow the pile to penetrate the soil.
    This concept includes a moment arm that will connect to one of Heerema's vessels to provide the required reaction force.
    Also, this pile is prepared for the future as by reversing the process, we can use it for removing foundations allowing low-cost decommissioning and full recycling or re-use of piles.
    Testing and Modeling of Piles
    The University of Dundee's School of Science and Engineering is carrying out a six-month testing and modeling program.
    The researchers involved have considerable experience developing helical piles in previous research projects in collaboration with Durham University and the University of Southampton.
    According to HMC, this program includes physically testing the piles using 3D-printed steel models in a geo-centrifuge, a device that simulates realistic soil stresses and installation conditions to match full-scale behavior using small models (1 to 100th scale).
    In the centrifuge, the installation requirements (forces and torques) and the installed capacity of the piles and pile clusters can be tested and measured directly.
    These tests complement the University of Dundee's ongoing research using discrete element method (DEM) modeling for varying soil conditions and pile designs.
    By using this method, a complete evaluation of the installation process and in-place performance can be analyzed using a range of variables.
    Their process replaces the millions of soil particles the pile would contact with on the seabed with larger balls with the same behavior as sand particles.
    Using this approach of combining physical and numerical modeling helps with rapid development in a controlled environment where many impacts on pile behavior can be assessed.
    HMC claimed that their testing program will reduce development costs when we move to full-scale tooling development and helps to de-risk future use of these low noise and sustainable foundation concepts.
    URLhttps://www.nauticuslive.com/post/1448/heerema-developing-silent-foundation-concepts-technology-in-coordination-with-the-university-of-dundee
    PersonsMichael Brown