Projects per year
Personal profile
Biography
Career: Dr Sutherland has worked in industry with Glaxo Group Research, obtained his PhD under the supervision of Professor Sir Philip Cohen, at the University of Dundee, and studied under Professor Daryl K Granner, at Vanderbilt University, Tennessee. He has obtained personal Fellowships from the American Diabetes Association, the Wellcome Trust and Diabetes UK covering his work from 1994 to 2008. He has obtained personal research funding in excess of £10 million and contributes to undergraduate teaching in Life Sciences and the Medical Faculty.
Overview: The Sutherland lab has contributed to the understanding of insulin signalling mechanisms and regulation of gene transcription, most recently in human tissue. Major breakthroughs include establishing a major regulatory mechanism of the key protein kinase GSK3, demonstrating that GSK3 inhibition enhances insulin action in the liver and is a potential treatment for diabetes, identifying the signalling pathway by which insulin turns off hepatic glucose production, finding the mechanism by which the protein CRMP2 is modified to promote its accumulation into tangles in Alzheimer’s disease and finding new physiological functions for GSK3 and the CRMP family of proteins.
Current Focus: The lab continues to develop technology for the discovery of insulin sensitising drugs and biomarkers of metabolic dysfunction that would help identify people at high risk of developing Type 2 Diabetes and dementia. In recent years the lab has characterised molecular connections between Diabetes and Dementia that could explain the increased risk of Dementia in the diabetic population, and is investigating the impact of insulin resistance and obesity on heart disease, cancer, behaviour and the effectiveness of diabetes therapies.
Research
Diabetes and Dementia
Funding: Diabetes UK and MRC
Insulin is the major hormone that prevents hyperglycaemia after a meal. When insulin does not work properly prolonged hyperglycaemia occurs (Diabetes), resulting in increased risk of heart disease, blindness, kidney failure, amputation, dementia and stroke. There are now more than 2 million people in the UK with diabetes. An understanding of the molecular aspects of insulin action will allow us to understand why diabetes occurs and how to develop strategies for prevention and cure, as well as prevent the complications of the disease. For example, insulin regulates the enzyme GSK3, which is closely linked to molecular development of neurodegenerative diseases such as Alzheimer's disease. Our group currently studies three aspects of insulin action.
1) Obesity, insulin resistance and molecular disease. In collaboration with our clinical colleagues at Ninewells Medical School we are establishing whether any of the molecules known to be important in the insulin regulation of gene expression are improperly regulated in human insulin resistance. This work led to the discovery of a novel insulin signalling mechanism. The human studies are generating new information on potential ‘biomarkers’ of early progression to diabetes, which should allow earlier and more efficacious intervention. In addition, we are investigating whether obesity alters the activity of CDK5, and how that alters response to drugs used in diabetes. In particular we are establishing whether changes in CDK5 activity may underpin some of the increased risk of cancer in the obese population.
2) Insulin action and the brain. Perhaps surprisingly, insulin receptors are found throughout the brain. Interestingly, there is a higher incidence of Alzheimer’s disease in the diabetic population and it is proposed to be due to defective insulin action on the brain. We have identified a family of proteins regulated by insulin and shown that it is dysregulated in Alzheimer’s disease 13. These proteins (CRMPs) are targeted by GSK3 which is known to be upregulated in diabetes 14-16. Therefore abnormal activity of this family could explain part of the association between diabetes and Alzheimer’s disease. In collaboration with Professor Balfour and Dr Stewart at Ninewells we have identified a specific overnutrition-induced change in behavioural flexibility that is not prevented by the anti-diabetes drug metformin 17 18. In addition, we are studying a new function of GSK3, the coordinated control of protein stability. This function provides the opportunity to develop new biomarkers of GSK3 which could have clinical utility in the early diagnosis of dementia, as well as the molecular stratification of diabetes (to improve treatment and care).
3) The genetic contribution to drug response in diabetes. In collaboration with Professor Pearson and McCrimmon at Ninewells we are studying the biology behind the genetic contribution to response to the most common anti-diabetes therapy, metformin. We are investigating why genetic variation in 3 genes influences whether a person with diabetes would respond to metformin and improve their blood glucose. The hope is this information will improve prescribing practice in diabetes, and may help find new therapies for those that can't use metformin.
Expertise related to UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):
Fingerprint
- 1 Similar Profiles
Network
-
Role of the GSK-3NRF2 Axis In Beta Cell Decline In Type 2 Diabetes
Cantley, J., Hayes, J., McNeilly, A. & Sutherland, C.
18/04/21 → 17/04/24
Project: Research
-
Point-of-care testing of HbA1c levels in community settings for people with established diabetes or people at risk of developing type 2 diabetes: a systematic review and meta-analysis protocol
Gourlay, A., Sutherland, C. & Radley, A., 12 May 2023, In: BMJ Open. 13, 5, 4 p., e072882.Research output: Contribution to journal › Article › peer-review
Open AccessFile2 Downloads (Pure) -
Overlooked and valuable facts to know in the NRF2/KEAP1 field
Kopacz, A., Rojo, A. I., Patibandla, C., Lastra-Martínez, D., Piechota-Polanczyk, A., Kloska, D., Jozkowicz, A., Sutherland, C., Cuadrado, A. & Grochot-Przeczek, A., 1 Nov 2022, In: Free Radical Biology and Medicine. 192, p. 37-49 13 p.Research output: Contribution to journal › Review article › peer-review
Open AccessFile2 Citations (Scopus)108 Downloads (Pure) -
Pleiotropic effects of Syntaxin16 identified by gene editing in cultured adipocytes
Bremner, S. K., Al Shammari, W. S., Milligan, R. S., Hudson, B. D., Sutherland, C., Bryant, N. J. & Gould, G. W., 18 Nov 2022, In: Frontiers in Cell and Developmental Biology. 10, 15 p., 1033501.Research output: Contribution to journal › Article › peer-review
Open AccessFile8 Downloads (Pure) -
The genetic association of the transcription factor NPAT with glycemic response to metformin involves regulation of fuel selection
Chen, C., Gallagher, J. R., Tarlton, J., van Aalten, L., Bray, S. E., Ashford, M. L. J., McCrimmon, R. J., Pearson, E. R., McNeilly, A. D. & Sutherland, C., 1 Jul 2021, In: PLoS ONE. 16, 7, 20 p., e0253533.Research output: Contribution to journal › Article › peer-review
Open AccessFile50 Downloads (Pure) -
Reducing Glut2 throughout the body does not result in cognitive behaviour differences in aged male mice
Morrice, N., van Aalten, L., McNeilly, A., McCrimmon, R. J., Pearson, E. R., Langston, R. & Sutherland, C., 16 Sept 2020, In: BMC Research Notes. 13, 6 p., 438.Research output: Contribution to journal › Article › peer-review
Open AccessFile1 Citation (Scopus)52 Downloads (Pure)
Prizes
-
Awarded the Diabetes UK Non-Clinical Senior Fellowship
Sutherland, Calum (Recipient), Jan 2003
Prize: Fellowship awarded competitively
Activities
-
Scottish Diabetes Framework (External organisation)
Calum Sutherland (Chair)
1 Jan 2022 → 31 Dec 2027Activity: Membership types › Membership of board
-
SIGN guidelines Board (External organisation)
Calum Sutherland (Chair)
18 Dec 2022 → 1 Jun 2024Activity: Membership types › Membership of board
-
Interview with STV on obesity and health
Calum Sutherland (Interviewee)
24 Nov 2021Activity: Other activity types › Public engagement and outreach - media article or participation
-
Make 2022 the year you cut the risk of type 2 diabetes says Dundee professor
Calum Sutherland (Interviewee) & Jonathan Watson (Contributor)
31 Dec 2021Activity: Other activity types › Public engagement and outreach - media article or participation
-
Series of live free public open events to celebrate 100 years since the discovery of insulin
Calum Sutherland (Chair), Mirela Delibegovic (Member), Rebecca M. Reynolds (Member), Gwyn Gould (Member), Ian Salt (Member), Mark Strachan (Member), Nik Morton (Member) & Alison Grant (Member)
10 Jun 2021 → 2 Sept 2022Activity: Other activity types › Public engagement and outreach - public lecture/debate/seminar