TY - JOUR
T1 - A carboxyl-terminal extension of the zinc finger domain contributes to the specificity and polarity of peroxisome proliferator-activated receptor DNA binding
AU - Hsu, Mei Hui
AU - Palmer, Colin N. A.
AU - Song, Wu
AU - Griffin, Keith J.
AU - Johnson, Eric F.
PY - 1998/10/23
Y1 - 1998/10/23
N2 - Heterodimers of the peroxisome proliferator-activated receptors (PPAR) and the retinoid X receptors (RXR) recognize response elements (PPREs) that exhibit the consensus sequence 5'-A(A/T)CT(A/G)GGNCAAAG(G/T)TCA-3'. The consensus PPRE includes both a 5'-extension and a direct repeat (DR1) comprised of two canonical core recognition sequences (underlined) for nuclear receptor zinc fingers separated by a single nucleotide spacer. The extended binding site recognized by PPARs is very similar to sites that bind monomers of the nuclear receptors Rev-ErbA and ROR suggesting that the latter could bind to PPREs and affect gene transcription. However, Rev-ErbA and ROR bind weakly to naturally occurring PPREs relative to the consensus binding site, and significant effects on PPARα transactivation of a CYP4A6-Z reporter were not observed. In contrast, PPAR/RXR heterodimers bind to a DR2 element containing the conserved 5'-extended sequence that is recognized by dimers of RORα or Rev-ErbA. PPARα/RXRα positively regulate transcription from this element, and co-expression of Rev-ErbA blocks this effect. The nuclear receptors NGFI-B and ROR utilize a carboxyl-terminal extension (CTE) of the zinc finger DNA binding domain in their interactions with the 5'- extension of a single zinc finger-binding site. DNA binding domains (DBD) of PPARs α, δ, and γ that contain the zinc finger motif and a CTE display binding to core recognition sequences that is dependent on the 5'-extended sequence found in PPREs. Unlike DBDs of other nuclear receptors that form heterodimers with RXR, the PPAR-DBDs did not exhibit cooperative binding with the DBD of RXR and exhibit the opposite polarity for binding to the direct repeat motif. In contrast to the corresponding DBD of RXR, the PPAR-DBDs bind as monomers to a single extended binding site as well as to the consensus PPRE. A chimera linking the zinc finger domain of RXRα to the CTE from PPARα bound to a single extended binding site indicating a functional role for the CTE of PPARs in extended binding site recognition.
AB - Heterodimers of the peroxisome proliferator-activated receptors (PPAR) and the retinoid X receptors (RXR) recognize response elements (PPREs) that exhibit the consensus sequence 5'-A(A/T)CT(A/G)GGNCAAAG(G/T)TCA-3'. The consensus PPRE includes both a 5'-extension and a direct repeat (DR1) comprised of two canonical core recognition sequences (underlined) for nuclear receptor zinc fingers separated by a single nucleotide spacer. The extended binding site recognized by PPARs is very similar to sites that bind monomers of the nuclear receptors Rev-ErbA and ROR suggesting that the latter could bind to PPREs and affect gene transcription. However, Rev-ErbA and ROR bind weakly to naturally occurring PPREs relative to the consensus binding site, and significant effects on PPARα transactivation of a CYP4A6-Z reporter were not observed. In contrast, PPAR/RXR heterodimers bind to a DR2 element containing the conserved 5'-extended sequence that is recognized by dimers of RORα or Rev-ErbA. PPARα/RXRα positively regulate transcription from this element, and co-expression of Rev-ErbA blocks this effect. The nuclear receptors NGFI-B and ROR utilize a carboxyl-terminal extension (CTE) of the zinc finger DNA binding domain in their interactions with the 5'- extension of a single zinc finger-binding site. DNA binding domains (DBD) of PPARs α, δ, and γ that contain the zinc finger motif and a CTE display binding to core recognition sequences that is dependent on the 5'-extended sequence found in PPREs. Unlike DBDs of other nuclear receptors that form heterodimers with RXR, the PPAR-DBDs did not exhibit cooperative binding with the DBD of RXR and exhibit the opposite polarity for binding to the direct repeat motif. In contrast to the corresponding DBD of RXR, the PPAR-DBDs bind as monomers to a single extended binding site as well as to the consensus PPRE. A chimera linking the zinc finger domain of RXRα to the CTE from PPARα bound to a single extended binding site indicating a functional role for the CTE of PPARs in extended binding site recognition.
UR - http://www.scopus.com/inward/record.url?scp=0032561340&partnerID=8YFLogxK
U2 - 10.1074/jbc.273.43.27988
DO - 10.1074/jbc.273.43.27988
M3 - Article
C2 - 9774413
AN - SCOPUS:0032561340
SN - 0021-9258
VL - 273
SP - 27988
EP - 27997
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 43
ER -