TY - JOUR
T1 - A new model for the vibration isolation via pile rows consisting of infinite number of piles
AU - Lu, Jian-F.
AU - Jeng, Dong-sheng
AU - Wan, Jian-Wei.
AU - Zhang, Ji-shen
N1 - Copyright 2012 Elsevier B.V., All rights reserved.
PY - 2013/10
Y1 - 2013/10
N2 - In this study, on the basis of the Floquet transform method, a numerical model for the simulation of the vibration isolation via multiple periodic pile rows with infinite number of piles is established. By means of the fictitious pile method due to Muki and Sternberg, the second kind of Fredholm integral equations for the pile rows are developed by using the fundamental solutions for the half-space and the compatibility conditions between the piles and half-space. Employing the Floquet transform method, integral equations for the pile rows in the wavenumber domain are then derived. Solution of the integral equations yields the wavenumber domain solution for the pile rows. The space domain solution can then be retrieved by inversion of the Floquet transform. Numerical results show that the proposed model with the Floquet transform method is in a good agreement with those of the conventional direct superposition method. On the basis of the new model, influences of the spacing between neighboring piles, the Young's modulus of the piles, and the pile length on the vibration isolation effect of the pile rows are investigated. Numerical simulations conducted in this study show that compared with the direct superposition method, the efficiency of the proposed model for simulation of the vibration isolation via pile rows is very high.
AB - In this study, on the basis of the Floquet transform method, a numerical model for the simulation of the vibration isolation via multiple periodic pile rows with infinite number of piles is established. By means of the fictitious pile method due to Muki and Sternberg, the second kind of Fredholm integral equations for the pile rows are developed by using the fundamental solutions for the half-space and the compatibility conditions between the piles and half-space. Employing the Floquet transform method, integral equations for the pile rows in the wavenumber domain are then derived. Solution of the integral equations yields the wavenumber domain solution for the pile rows. The space domain solution can then be retrieved by inversion of the Floquet transform. Numerical results show that the proposed model with the Floquet transform method is in a good agreement with those of the conventional direct superposition method. On the basis of the new model, influences of the spacing between neighboring piles, the Young's modulus of the piles, and the pile length on the vibration isolation effect of the pile rows are investigated. Numerical simulations conducted in this study show that compared with the direct superposition method, the efficiency of the proposed model for simulation of the vibration isolation via pile rows is very high.
KW - the Floquet transform
KW - multiple periodic pile rows
KW - vibration isolation
KW - fictitious pile method
KW - Fredholm integral equation
UR - http://www.scopus.com/inward/record.url?scp=84866098982&partnerID=8YFLogxK
U2 - 10.1002/nag.2141
DO - 10.1002/nag.2141
M3 - Article
SN - 0363-9061
VL - 37
SP - 2394
EP - 2426
JO - International Journal for Numerical and Analytical Methods in Geomechanics
JF - International Journal for Numerical and Analytical Methods in Geomechanics
IS - 15
ER -