A Novel Hydraulic Actuation System Utilizing Magnetorheological Fluids for Single-Port Laparoscopic Surgery Applications

Research output: Contribution to journalSpecial issue

5 Downloads (Pure)

Abstract

Single-port laparoscopic surgery (SLS), which utilizes one major incision, can deliver favorable cosmetic outcomes with less patient hospitalization stay and postoperative pain. However, current SLS instruments, which are rigid and slender, have been suffering from several drawbacks including their inability to provide the optimum articulation required to complete certain SLS tasks. This paper reports on the development of a lightweight smart hydraulic actuation system which is proposed to be embedded at selected joints along current SLS instruments to enhance their adaptability with a higher level of stiffness and degrees-offreedom. The developed smart actuation system utilizes both conventional hydraulic and magnetorheological (MR) fluid actuation technologies. Electromagnetic finite element analyses were conducted to design the electromagnetic circuit of the smart actuator. A prototype of the developed actuation system was manufactured, and its performance was assessed using a dedicated experimental arrangement, which was found to agree well with the results obtained using a Bingham-plastic theoretical model. Finally, the present design of the developed smart actuation system permits an angulation of about 90° and a maximum force output in excess of 100N that is generated under a magnetic excitation of about 1.2 Tesla, which should be sufficient to resist torques of up to 500mNm.
Original languageEnglish
Article number1380
Pages (from-to)1-13
Number of pages13
JournalMaterials
Volume13
Issue number6
DOIs
Publication statusPublished - 20 Mar 2020

    Fingerprint

Cite this