Abstract
Single-port laparoscopic surgery (SLS), which utilizes one major incision, can deliver favorable cosmetic outcomes with less patient hospitalization stay and postoperative pain. However, current SLS instruments, which are rigid and slender, have been suffering from several drawbacks including their inability to provide the optimum articulation required to complete certain SLS tasks. This paper reports on the development of a lightweight smart hydraulic actuation system which is proposed to be embedded at selected joints along current SLS instruments to enhance their adaptability with a higher level of stiffness and degrees-offreedom. The developed smart actuation system utilizes both conventional hydraulic and magnetorheological (MR) fluid actuation technologies. Electromagnetic finite element analyses were conducted to design the electromagnetic circuit of the smart actuator. A prototype of the developed actuation system was manufactured, and its performance was assessed using a dedicated experimental arrangement, which was found to agree well with the results obtained using a Bingham-plastic theoretical model. Finally, the present design of the developed smart actuation system permits an angulation of about 90° and a maximum force output in excess of 100N that is generated under a magnetic excitation of about 1.2 Tesla, which should be sufficient to resist torques of up to 500mNm.
Original language | English |
---|---|
Article number | 1380 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Materials |
Volume | 13 |
Issue number | 6 |
DOIs | |
Publication status | Published - 20 Mar 2020 |
Keywords
- smart materials
- magnetic-responsive materials
- magnetorheological fludes
- smart material actuator
- smart hydraulic actuator
- single-port laparoscopic surgery (SLS)
- Single-port laparoscopic surgery (SLS)
- Magnetic-responsive materials
- Magnetorheological fluids
- Smart materials
- Smart hydraulic actuator
- Smart material actuator
ASJC Scopus subject areas
- General Materials Science