A novel osteotomy in shoulder joint replacement based on analysis of the cartilage/metaphyseal interface

Fraser Harrold (Lead / Corresponding author), Amar Malhas, Carlos Wigderowitz

    Research output: Contribution to journalArticle

    5 Citations (Scopus)

    Abstract

    Background: The accuracy of reconstruction is thought to impact on functional outcome following glenohumeral joint arthroplasty. The objective of this study was to define an area of minimal anatomic variation at the cartilage/metaphyseal interface of the proximal humerus to optimize the osteotomy of the humeral head, enabling accurate reconstruction with a prosthetic component. Methods: Hand held digitization and 3D surface laser scanning techniques were used to digitize 24 cadaveric arms and determine the normal geometry. Each humeral head was then examined to identify the most consistent anatomical landmarks for the ideal osteotomy plane to optimize humeral component positioning. Findings: The novel, posterior referencing, osteotomy resulted in a mean increase in retroversion of only 0.4° when compared to the original geometry. A traditional anterior referencing osteotomy, by comparison, produced a mean increase in retroversion of 11°. In addition, the novel osteotomy only increased axial diameter by 0.71 mm and head height by 0.02 mm compared to an anterior referencing osteotomy (3.0 mm and 2.7 mm respectively). Interpretation: The traditional osteotomy, referencing the anterior border of the cartilage/metaphyseal interface potentially resulted in an increase in prosthetic head size and retroversion. The novel osteotomy, referencing from the posterior cartilage/metaphyseal interface enabled a more accurate recovery of head geometry. Importantly, the increase in retroversion created by the traditional osteotomy was not replicated with the novel technique. Referencing from the posterior cartilage/metaphyseal interface produced a more reliable osteotomy, more closely matching the original humeral geometry. Level of Evidence: Basic Science, Anatomic study, Computer model.
    Original languageEnglish
    Pages (from-to)1032-1038
    Number of pages7
    JournalClinical Biomechanics
    Volume29
    Issue number9
    DOIs
    Publication statusPublished - Nov 2014

      Fingerprint

    Keywords

    • Shoulder
    • Arthroplasty
    • Osteotomy
    • Anatomy
    • Humerus
    • geometry

    Cite this