A potato STRUBBELIG-RECEPTOR FAMILY member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity

Haixia Wang, Yanlin Chen, Xingtong Wu, Zongshang Long, Chunlian Sun, Hairong Wang, Shumei Wang, Paul R. J. Birch, Zhendong Tian (Lead / Corresponding author)

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)
175 Downloads (Pure)


Plant STRUBBELIG (SUB)-RECEPTOR FAMILY (SRF) genes encode putative leucine-rich repeat transmembrane receptor-like kinases. SRFs have been reported to play essential roles in tissue morphogenesis in many plant organs. Here, we show that a potato SRF family gene, StLRPK1, is involved in plant immunity. StLRPK1 is located at the cell plasma membrane and is strongly induced by culture filtrate from in vitro growth of the late blight pathogen Phytophthora infestans. Overexpression of StLRPK1 in stable transgenic potato or ectopic expression in Nicotiana benthamiana plants enhances P. infestans disease resistance, whereas RNA interference (RNAi) of StLRPK1 in potato decreases disease resistance. We found that StLRPK1 constitutively interacts with a pivotal co-receptor, SERK3A/BAK1, which plays a central role in plant immunity. Virus-induced gene silencing of SERK3A/BAK1 in N. benthamiana lines expressing StLRPK1 attenuated P. infestans resistance, indicating that SERK3A/BAK1 is required for StLRPK1-mediated immunity. Finally, we show that StLRPK1-triggered late blight resistance depends on the mitogen-activated protein kinase kinase MEK2 and mitogen-activated protein kinase WIPK. We propose a model in which StLRPK1 associates with SERK3A/BAK1 to positively regulate plant immunity to P. infestans through a MAPK cascade. These data provide new insights into our understanding of SRF function in plant immunity.

Original languageEnglish
Pages (from-to)5573-5586
Number of pages14
JournalJournal of Experimental Botany
Issue number22
Early online date22 Aug 2018
Publication statusPublished - 1 Dec 2018


  • Late blight
  • MAPK cascade
  • PAMP-triggered immunity
  • receptor-like kinases
  • StLRPK1

ASJC Scopus subject areas

  • Physiology
  • Plant Science


Dive into the research topics of 'A potato STRUBBELIG-RECEPTOR FAMILY member, StLRPK1, associates with StSERK3A/BAK1 and activates immunity'. Together they form a unique fingerprint.

Cite this