TY - JOUR
T1 - A proposed pathway from D-glucose to D-arabinose in eukaryotes
AU - Iljazi, Elda
AU - Nagar, Rupa
AU - Kuettel, Sabine
AU - Lucas, Kieron
AU - Crossman, Arthur
AU - Badet-Denisot, Marie-Ange
AU - Woodard, Ronald W.
AU - Ferguson, Michael A. J.
N1 - Copyright:
© 2024 The Authors. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.
PY - 2024/8
Y1 - 2024/8
N2 - In eukaryotes, the D-enantiomer of arabinose (D-Ara) is an intermediate in the biosynthesis of D-erythroascorbate in yeast and fungi and in the biosynthesis of the nucleotide sugar GDP-α-D-arabinopyranose (GDP-D-Arap) and complex α-D-Arap containing surface glycoconjugates in certain trypanosomatid parasites. Whereas the biosynthesis of D-Ara in prokaryotes is well understood, the route from D-glucose (D-Glc) to D-Ara in eukaryotes is unknown. In this paper, we study the conversion of D-Glc to D-Ara in the trypanosomatid Crithidia fasciculata using positionally labelled [13C]-D-Glc and [13C]-D-ribose ([13C]-D-Rib) precursors and a novel derivatisation and gas chromatography-mass spectrometry procedure applied to a terminal metabolite, lipoarabinogalactan. These data implicate the both arms of pentose phosphate pathway and a likely role for D-ribulose-5-phosphate (D-Ru-5P) isomerisation to D-Ara-5P. We tested all C. fasciculata putative sugar and polyol phosphate isomerase genes for their ability to complement a D-Ara-5P isomerase-deficient mutant of Escherichia coli and found that one, the glutamine fructose-6-phosphate aminotransferase (GFAT) of glucosamine biosynthesis, was able to rescue the E. coli mutant. We also found that GFAT genes of other trypanosomatid parasites, and those of yeast and human origin, could complement the E. coli mutant. Finally, we demonstrated biochemically that recombinant human GFAT can isomerise D-Ru-5P to D-Ara5P. From these data, we postulate a general eukaryotic pathway from D-Glc to D-Ara and discuss its possible significance. With respect to C. fasciculata, we propose that D-Ara is used not only for the synthesis of GDP-D-Arap and complex surface glycoconjugates but also in the synthesis of D-erythroascorbate.
AB - In eukaryotes, the D-enantiomer of arabinose (D-Ara) is an intermediate in the biosynthesis of D-erythroascorbate in yeast and fungi and in the biosynthesis of the nucleotide sugar GDP-α-D-arabinopyranose (GDP-D-Arap) and complex α-D-Arap containing surface glycoconjugates in certain trypanosomatid parasites. Whereas the biosynthesis of D-Ara in prokaryotes is well understood, the route from D-glucose (D-Glc) to D-Ara in eukaryotes is unknown. In this paper, we study the conversion of D-Glc to D-Ara in the trypanosomatid Crithidia fasciculata using positionally labelled [13C]-D-Glc and [13C]-D-ribose ([13C]-D-Rib) precursors and a novel derivatisation and gas chromatography-mass spectrometry procedure applied to a terminal metabolite, lipoarabinogalactan. These data implicate the both arms of pentose phosphate pathway and a likely role for D-ribulose-5-phosphate (D-Ru-5P) isomerisation to D-Ara-5P. We tested all C. fasciculata putative sugar and polyol phosphate isomerase genes for their ability to complement a D-Ara-5P isomerase-deficient mutant of Escherichia coli and found that one, the glutamine fructose-6-phosphate aminotransferase (GFAT) of glucosamine biosynthesis, was able to rescue the E. coli mutant. We also found that GFAT genes of other trypanosomatid parasites, and those of yeast and human origin, could complement the E. coli mutant. Finally, we demonstrated biochemically that recombinant human GFAT can isomerise D-Ru-5P to D-Ara5P. From these data, we postulate a general eukaryotic pathway from D-Glc to D-Ara and discuss its possible significance. With respect to C. fasciculata, we propose that D-Ara is used not only for the synthesis of GDP-D-Arap and complex surface glycoconjugates but also in the synthesis of D-erythroascorbate.
KW - Crithidia fasciculata
KW - glucose metabolism
KW - pentose phosphate pathway
KW - D-arabinose
KW - D-erythroascorbate
UR - http://www.scopus.com/inward/record.url?scp=85198518168&partnerID=8YFLogxK
U2 - 10.1016/j.jbc.2024.107500
DO - 10.1016/j.jbc.2024.107500
M3 - Article
C2 - 38944124
SN - 0021-9258
VL - 300
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 8
M1 - 107500
ER -