A reversible light- and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature

Almudena Trapero-Mozos, Laurence J. M. Ducreux, Craita E. Bita, Wayne Morris, Cosima Wiese, Jenny A. Morris, Christy Paterson, Peter E. Hedley, Robert D. Hancock, Mark Taylor (Lead / Corresponding author)

Research output: Contribution to journalArticle

7 Citations (Scopus)
134 Downloads (Pure)

Abstract

Main conclusion: A powerful acquired thermotolerance response in potato was demonstrated and characterised in detail, showing the time course required for tolerance, the reversibility of the process and requirement for light.

Potato is particularly vulnerable to increased temperature, considered to be the most important uncontrollable factor affecting growth and yield of this globally significant crop. Here, we describe an acquired thermotolerance response in potato, whereby treatment at a mildly elevated temperature primes the plant for more severe heat stress. We define the time course for acquiring thermotolerance and demonstrate that light is essential for the process. In all four commercial tetraploid cultivars that were tested, acquisition of thermotolerance by priming was required for tolerance at elevated temperature. Accessions from several wild-type species and diploid genotypes did not require priming for heat tolerance under the test conditions employed, suggesting that useful variation for this trait exists. Physiological, transcriptomic and metabolomic approaches were employed to elucidate potential mechanisms that underpin the acquisition of heat tolerance. This analysis indicated a role for cell wall modification, auxin and ethylene signalling, and chromatin remodelling in acclimatory priming resulting in reduced metabolic perturbation and delayed stress responses in acclimated plants following transfer to 40 °C.

Original languageEnglish
Pages (from-to)1377-1392
Number of pages16
JournalPlanta
Volume247
Issue number6
Early online date8 Mar 2018
DOIs
Publication statusPublished - Jun 2018

Keywords

  • Acquired thermotolerance
  • Electrolyte leakage
  • Heat tolerance
  • Potato
  • Redox couples
  • Yield

Fingerprint Dive into the research topics of 'A reversible light- and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature'. Together they form a unique fingerprint.

  • Research Output

    • 7 Citations
    • 1 Article

    Correction to: A reversible light- and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature

    Trapero-Mozos, A., Ducreux, L. J. M., Bita, C. E., Morris, W., Wiese, C., Morris, J. A., Paterson, C., Hedley, P. E., Hancock, R. D. & Taylor, M., Jun 2018, In : Planta. 247, 6, p. 1393-1393 1 p.

    Research output: Contribution to journalArticle

    Open Access
    File
  • 1 Citation (Scopus)
    149 Downloads (Pure)

    Cite this

    Trapero-Mozos, A., Ducreux, L. J. M., Bita, C. E., Morris, W., Wiese, C., Morris, J. A., Paterson, C., Hedley, P. E., Hancock, R. D., & Taylor, M. (2018). A reversible light- and genotype-dependent acquired thermotolerance response protects the potato plant from damage due to excessive temperature. Planta, 247(6), 1377-1392. https://doi.org/10.1007/s00425-018-2874-1