TY - JOUR
T1 - A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics
AU - Westman, Belinda J.
AU - Lamond, Angus I.
N1 - MEDLINE® is the source for the MeSH terms of this document.
PY - 2011/1/1
Y1 - 2011/1/1
N2 - A role for SUMOylation in the biogenesis and/or function of Box C/D snoRNPs has been reported, mediated via SUMO2 conjugation to the core snoRNP protein, Nop58. A quantitative proteomics screen, based on SILAC (stable-isotope labeling by amino acids in cell culture) and mass spectrometry using extracts prepared from cultured mammalian cells expressing either 6His-SUMO1 or -SUMO2, revealed that the snoRNP-related proteins Nop58, Nhp2, DKC1 and NOLC1 are amongst the main SUMO-modified proteins in the nucleolus. SUMOylation of Nhp2 and endogenous Nop58 was confirmed using a combination of in vitro and cell-based assays and the modified lysines identified by site-directed mutagenesis. SUMOylation of Nop58 was found to be important for high-affinity Box C/D snoRNA binding and the localization of newly transcribed snoRNAs to the nucleolus. Here, these findings are reviewed and a model for understanding Nop58 SUMOylation in the context of Box C/D snoRNP biogenesis is presented. Given the essential role of snoRNPs in the modification of pre-ribosomal RNA, this work suggests that SUMO, snoRNPs and ribosome assembly, and thus cellular translation, growth and proliferation, may be linked via novel mechanisms which warrant further investigation.
AB - A role for SUMOylation in the biogenesis and/or function of Box C/D snoRNPs has been reported, mediated via SUMO2 conjugation to the core snoRNP protein, Nop58. A quantitative proteomics screen, based on SILAC (stable-isotope labeling by amino acids in cell culture) and mass spectrometry using extracts prepared from cultured mammalian cells expressing either 6His-SUMO1 or -SUMO2, revealed that the snoRNP-related proteins Nop58, Nhp2, DKC1 and NOLC1 are amongst the main SUMO-modified proteins in the nucleolus. SUMOylation of Nhp2 and endogenous Nop58 was confirmed using a combination of in vitro and cell-based assays and the modified lysines identified by site-directed mutagenesis. SUMOylation of Nop58 was found to be important for high-affinity Box C/D snoRNA binding and the localization of newly transcribed snoRNAs to the nucleolus. Here, these findings are reviewed and a model for understanding Nop58 SUMOylation in the context of Box C/D snoRNP biogenesis is presented. Given the essential role of snoRNPs in the modification of pre-ribosomal RNA, this work suggests that SUMO, snoRNPs and ribosome assembly, and thus cellular translation, growth and proliferation, may be linked via novel mechanisms which warrant further investigation.
UR - http://www.scopus.com/inward/record.url?scp=79952679740&partnerID=8YFLogxK
U2 - 10.4161/nucl.2.1.14437
DO - 10.4161/nucl.2.1.14437
M3 - Article
C2 - 21647297
AN - SCOPUS:79952679740
SN - 1949-1034
VL - 2
SP - 30
EP - 37
JO - Nucleus
JF - Nucleus
IS - 1
ER -