Abstract
Single-crystal Raman and polycrystalline thin-film infrared measurements have been obtained for the polar organic nonlinear optical material 2-(alpha-methylbenzylamino)-5-nitropyridine(MBANP). For comparison, thin-film polycrystalline infrared measurements were also made on 2-(alpha-methylbenzylamino)-3,5-dinitropyridine (MBADNP). The long wavelength electronic absorption was measured in several solvents and as a thin solid film. The Raman spectra are dominated by three intense bands attributed to vibrations of the ring, the NO2 substituent, and the N-H bond. The most intense scattering and absorption arose from the alpha(bb) component of the polarisability tensor. This implies that the most significant contribution to the transition polarisability arises from the electronic transition near 383 nm, polarised along the b-axis of the crystal. The strongest bands in the infrared spectra are also associated with the same three bands, consistent with the predictions of the effective conjugation coordinate (ECC) theory, implying efficient electron-phonon coupling (or electronic delocalisation) in the conjugated system. DFT calculations of vibrational wavenumbers and eigenvectors were used to assign relevant vibrational features and to derive useful information about the molecular structure. This single-crystal material is also a strong candidate for an efficient laser Raman converter with a large wavenumber shift of 3404 cm(-1) and a high damage threshold. Copyright (C) 2010 John Wiley & Sons, Ltd.
Original language | English |
---|---|
Pages (from-to) | 1174-1184 |
Number of pages | 11 |
Journal | Journal of Raman Spectroscopy |
Volume | 42 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2011 |
Keywords
- MBANP
- Raman spectroscopy
- organic nonlinear
- DFT calculations
- electron-phonon coupling
- VIBRATIONAL-SPECTRA
- THERMAL-PROPERTIES
- HYDROGEN
- DENSITY
- DERIVATIVES
- MOLECULES
- EXCHANGE
- ATOMS