Abstract
Global genome nucleotide excision repair (GG-NER) removes DNA damage from nontranscribing DNA. In Saccharomyces cerevisiae, the RAD7 and RAD16 genes are specifically required for GG-NER. We have reported that autonomously replicating sequence-binding factor 1 (ABF1) protein forms a stable complex with Rad7 and Rad16 proteins. ABF1 functions in transcription, replication, gene silencing, and NER in yeast. Here we show that binding of ABF1 to its DNA recognition sequence found at multiple genomic locations promotes efficient GG-NER in yeast. Mutation of the I silencer ABF1-binding site at the HML alpha locus caused loss of ABF1 binding, which resulted in a domain of reduced GG-NER efficiency on one side of the ABF1-binding site. During GG-NER, nucleosome positioning at this site was not altered, and this correlated with an inability of the GG-NER complex to reposition nucleosomes in vitro. We discuss how the GG-NER complex might facilitate GG-NER while preventing unregulated gene transcription during this process.
Original language | English |
---|---|
Pages (from-to) | 966-973 |
Number of pages | 8 |
Journal | Journal of Biological Chemistry |
Volume | 284 |
Issue number | 2 |
DOIs | |
Publication status | Published - 9 Jan 2009 |
Keywords
- YEAST SACCHAROMYCES-CEREVISIAE
- SEQUENCE BINDING-FACTOR
- III-SENSITIVE SITES
- IN-VITRO
- DNA TRANSLOCATION
- DIRECTIONAL ESTABLISHMENT
- UV-IRRADIATION
- BUDDING YEAST
- ABF1 PROTEIN
- HML-ALPHA