Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls

Fabian Rost, Aida Rodrigo Albors, Vladimir Mazurov, Lutz Brusch, Andreas Deutsch, Elly M. Tanaka (Lead / Corresponding author), Osvaldo Chara (Lead / Corresponding author)

    Research output: Contribution to journalArticlepeer-review

    28 Citations (Scopus)
    244 Downloads (Pure)

    Abstract

    Axolotls are unique in their ability to regenerate the spinal cord. However, the mechanisms that underlie this phenomenon remain poorly understood. Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions (Rodrigo Albors et al., 2015). Here, we refine the analysis of cell proliferation in space and time and identify a high-proliferation zone in the regenerating spinal cord that shifts posteriorly over time. By tracking sparsely-labeled cells, we also quantify cell influx into the regenerate. Taking a mathematical modeling approach, we integrate these quantitative datasets of cell proliferation, neural stem cell activation and cell influx, to predict regenerative tissue outgrowth. Our model shows that while cell influx and neural stem cell activation play a minor role, the acceleration of the cell cycle is the major driver of regenerative spinal cord outgrowth in axolotls.

    Original languageEnglish
    Article numbere20537
    Pages (from-to)1-16
    Number of pages16
    JournaleLife
    Early online date25 Nov 2016
    DOIs
    Publication statusPublished - 25 Nov 2016

    Fingerprint

    Dive into the research topics of 'Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls'. Together they form a unique fingerprint.

    Cite this