TY - JOUR
T1 - Activation of the Innate Immune Checkpoint CLEC5A on Myeloid Cells in the Absence of Danger Signals Modulates Macrophages' Function but Does Not Trigger the Adaptive T Cell Immune Response
AU - Tosiek, Milena J.
AU - Groesser, Kerstin
AU - Pekcec, Anton
AU - Zwirek, Monika
AU - Murugesan, Gavuthami
AU - Borges, Eric
N1 - Publisher Copyright:
Copyright © 2022 Milena J. Tosiek et al.
PY - 2022/2/25
Y1 - 2022/2/25
N2 - C-Type lectin receptor 5A (CLEC5A) is a spleen tyrosine kinase- (Syk-) coupled pattern recognition receptor expressed on myeloid cells and involved in the innate immune response to viral and bacterial infections. Activation of the CLEC5A receptor with pathogen-derived antigens leads to a secretion of proinflammatory mediators such as TNF-α and IL-6 that may provoke a systemic cytokine storm, and CLEC5A gene polymorphisms are associated with the severity of DV infection. In addition, the CLEC5A receptor was mentioned in the context of noninfectious disorders like chronic obstructive pulmonary disease (COPD) or arthritis. Altogether, CLEC5A may be considered as an innate immune checkpoint capable to amplify proinflammatory signals, and this way contributes to infection or to aseptic inflammation. In this study, we determined CLEC5A receptor expression on different macrophage subsets (in vitro and ex vivo) and the functional consequences of its activation in aseptic conditions. The CLEC5A surface expression appeared the highest on proinflammatory M1 macrophages while intermediate on tumor-associated phenotypes (M2c or TAM). In contrast, the CLEC5A expression on ex vivo-derived alveolar macrophages from healthy donors or macrophages from ovarian cancer patients was hardly detectable. Targeting CLEC5A on noninflammatory macrophages with an agonistic α-CLEC5A antibody triggered a release of proinflammatory cytokines, resembling a response to dengue virus, and led to phenotypic changes in myeloid cells that may suggest their reprogramming towards a proinflammatory phenotype, e.g., upregulation of CD80 and downregulation of CD163. Interestingly, the CLEC5A agonist upregulated immune-regulatory molecules like CD206, PD-L1, and cytokines like IL-10, macrophage-derived chemokine (MDC/CCL22), and thymus and activation chemokine (TARC/CCL17) which are associated with an anti-inflammatory or a protumorigenic macrophage phenotype. In the absence of concomitant pathogenic or endogenous danger signals, the CLEC5A receptor activation did not amplify an autologous T cell response, which may represent a protective innate mechanism to avoid an undesirable autoimmune adaptive response.
AB - C-Type lectin receptor 5A (CLEC5A) is a spleen tyrosine kinase- (Syk-) coupled pattern recognition receptor expressed on myeloid cells and involved in the innate immune response to viral and bacterial infections. Activation of the CLEC5A receptor with pathogen-derived antigens leads to a secretion of proinflammatory mediators such as TNF-α and IL-6 that may provoke a systemic cytokine storm, and CLEC5A gene polymorphisms are associated with the severity of DV infection. In addition, the CLEC5A receptor was mentioned in the context of noninfectious disorders like chronic obstructive pulmonary disease (COPD) or arthritis. Altogether, CLEC5A may be considered as an innate immune checkpoint capable to amplify proinflammatory signals, and this way contributes to infection or to aseptic inflammation. In this study, we determined CLEC5A receptor expression on different macrophage subsets (in vitro and ex vivo) and the functional consequences of its activation in aseptic conditions. The CLEC5A surface expression appeared the highest on proinflammatory M1 macrophages while intermediate on tumor-associated phenotypes (M2c or TAM). In contrast, the CLEC5A expression on ex vivo-derived alveolar macrophages from healthy donors or macrophages from ovarian cancer patients was hardly detectable. Targeting CLEC5A on noninflammatory macrophages with an agonistic α-CLEC5A antibody triggered a release of proinflammatory cytokines, resembling a response to dengue virus, and led to phenotypic changes in myeloid cells that may suggest their reprogramming towards a proinflammatory phenotype, e.g., upregulation of CD80 and downregulation of CD163. Interestingly, the CLEC5A agonist upregulated immune-regulatory molecules like CD206, PD-L1, and cytokines like IL-10, macrophage-derived chemokine (MDC/CCL22), and thymus and activation chemokine (TARC/CCL17) which are associated with an anti-inflammatory or a protumorigenic macrophage phenotype. In the absence of concomitant pathogenic or endogenous danger signals, the CLEC5A receptor activation did not amplify an autologous T cell response, which may represent a protective innate mechanism to avoid an undesirable autoimmune adaptive response.
UR - http://www.scopus.com/inward/record.url?scp=85125798610&partnerID=8YFLogxK
U2 - 10.1155/2022/9926305
DO - 10.1155/2022/9926305
M3 - Article
C2 - 35252461
AN - SCOPUS:85125798610
SN - 2314-7156
VL - 2022
SP - 1
EP - 22
JO - Journal of Immunology Research
JF - Journal of Immunology Research
M1 - 9926305
ER -