Activation of the protease from human adenovirus type 2 is accompanied by a conformational change that is dependent on cysteine-104

Sarah J. Jones, Munir Iqbal, Alasdair W. Grierson, Graham Kemp

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    Adenovirus codes for a protease the activity of which can be regulated in vitro by an 11 residue peptide (GVQSLKRRRCF) derived from another viral protein, pVI. Three cysteine residues, one in the activating peptide and two in the protease (C104 and C122), play a central role in both activation and catalysis. Expression of protease mutants in insect cells has shown that C104 is not essential for proteolytic activity. GVQSLKRRRCF also caused a concentration-dependent increase in tryptophan fluorescence of protease expressed in Escherichia coli that paralleled the increase in proteolytic activity, indicating that activation was accompanied by a conformational change. Tryptophan fluorescence of C104S was not increased by the addition of GVQSLKRRRCF, nor was the fluorescence of wild-type protease increased by the addition of the peptide analogues where cysteine is replaced by aspartic acid or serine, suggesting that C104 is involved in activation and C122 in catalysis.
    Original languageEnglish
    Pages (from-to)1821-1824
    JournalJournal of General Virology
    Volume77
    Issue number8
    DOIs
    Publication statusPublished - Aug 1996

    Fingerprint

    Dive into the research topics of 'Activation of the protease from human adenovirus type 2 is accompanied by a conformational change that is dependent on cysteine-104'. Together they form a unique fingerprint.

    Cite this