Projects per year
Abstract
Bacterial infection and corrosion are two of the most common causes of the failure for the use of biomedical metallic implants. In this paper, we developed a facile two-step approach for synthesizing a TiO2-PTFE nanocomposite coating on stainless steel substrate with both antibacterial and anticorrosion properties by using a sol-gel dip coating technique. A sub-layer of bioinspired polydopamine (PDA) was first coated on the stainless steel substrate to improve the adhesion and reactivity, then TiO2-PTFE was uniformly co-deposited onto the PDA sub-layer. Both PTFE and TiO2 contents had a significant influence on the surface energy of the TiO2-PTFE coating. The coating with the total surface energy of 26 mJ/m2 exhibited minimal bacterial adhesion against both Gram-negative Escherichia coli WT F1693 and Gram-positive Staphylococcus aureus F1557, which was explained using the extended DLVO theory. Benefiting from the synergistic effect between TiO2 and PTFE, the TiO2-PTFE coating showed improved corrosion resistance in artificial body fluids compared with the sole TiO2 coating or PTFE coating. The TiO2-PTFE coating also demonstrated extraordinary biocompatibility with fibroblast cells in culture, making it a prospective strategy to overcome current challenges in the use of metallic implants.
Original language | English |
---|---|
Pages (from-to) | 231-241 |
Number of pages | 11 |
Journal | Applied Surface Science |
Volume | 490 |
Early online date | 8 Jun 2019 |
DOIs | |
Publication status | Published - 1 Oct 2019 |
Keywords
- Titanium dioxide
- Polytetrafluoroethylene
- Surface energy
- Antibacterial activity
- Corrosion
Fingerprint
Dive into the research topics of 'Advanced titanium dioxide-polytetrafluorethylene (TiO2-PTFE) nanocomposite coatings on stainless steel surfaces with antibacterial and anti-corrosion properties'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Influence of Surface Properties of New Biomaterials for Catheters on Bacterial Adhesion Urine
Campbell, P. (Investigator), Corner, G. (Investigator), Davidson, F. (Investigator), Keatch, R. (Investigator), Nabi, G. (Investigator), Vorstius, J. B. (Investigator), Wilcox, K. (Investigator) & Zhao, Q. (Investigator)
Engineering and Physical Sciences Research Council
1/12/16 → 31/10/21
Project: Research
Profiles
-
Zhao, Qi
- Mechanical and Industrial Engineering - Professor of Materials Science and Engineering
Person: Academic