Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation

Jingkun Chen, Hongwei Li, Jianguo Zhang, Bjoern Menze

Research output: Chapter in Book/Report/Conference proceedingConference contribution

13 Citations (Scopus)
166 Downloads (Pure)

Abstract

Analysis and modeling of the ventricles and myocardium are important in the diagnostic and treatment of heart diseases. Manual delineation of those tissues in cardiac MR (CMR) scans is laborious and time-consuming. The ambiguity of the boundaries makes the segmentation task rather challenging. Furthermore, the annotations on some modalities such as Late Gadolinium Enhancement (LGE) MRI, are often not available. We propose an end-to-end segmentation framework based on convolutional neural network (CNN) and adversarial learning. A dilated residual U-shape network is used as a segmentor to generate the prediction mask; meanwhile, a CNN is utilized as a discriminator model to judge the segmentation quality. To leverage the available annotations across modalities per patient, a new loss function named weak domain-transfer loss is introduced to the pipeline. The proposed model is evaluated on the public dataset released by the challenge organizer in MICCAI 2019, which consists of 45 sets of multi-sequence CMR images. We demonstrate that the proposed adversarial pipeline outperforms baseline deep-learning methods.

Original languageEnglish
Title of host publicationStatistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges
Subtitle of host publication10th International Workshop, STACOM 2019, Held in Conjunction with MICCAI 2019, Revised Selected Papers
EditorsMihaela Pop, Maxime Sermesant, Oscar Camara, Xiahai Zhuang, Shuo Li, Alistair Young, Tommaso Mansi, Avan Suinesiaputra
PublisherSpringer Verlag
Pages317-325
Number of pages9
Volume12009
ISBN (Electronic)9783030390747
ISBN (Print)9783030390730
DOIs
Publication statusPublished - 2020
Event10th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2019, held in conjunction with the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201913 Oct 2019

Publication series

NameLecture Notes in Computer Science
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference10th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2019, held in conjunction with the 22nd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period13/10/1913/10/19

Keywords

  • Adversarial convolutional network
  • Multi-sequence cardiac segmentation

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation'. Together they form a unique fingerprint.

Cite this