TY - JOUR
T1 - Altered network properties in C9ORF72 repeat expansion cortical neurons are due to synaptic dysfunction
AU - Perkins, Emma M.
AU - Burr, Karen
AU - Banerjee, Poulomi
AU - Mehta, Arpan R.
AU - Dando, Owen
AU - Selvaraj, Bhuvaneish T.
AU - Suminaite, Daumante
AU - Nanda, Jyoti
AU - Henstridge, Christopher M.
AU - Gillingwater, Thomas H.
AU - Hardingham, Giles E.
AU - Wyllie, David J. A.
AU - Chandran, Siddharthan
AU - Livesey, Matthew R.
N1 - Funded by MRC, Euan MacDonald Centre, DBT-India, ISSF (Wellcome Trust/University of Edinburgh), RS MacDonald Seedcorn fund, MND Scotland, Royal Society of Edinburgh (CRF) and the Wellcome Trust (Grant 092742/Z/10/Z to D.J.A.W., S.C. and G.E.H.). SC and GEH labs are funded by the UK Dementia Research Institute(DRI), which receives its funding from UK DRI Ltd, funded by the MRC, Alzheimer’s Society and Alzheimer’s Research UK. A.R.M. is a Lady Edith Wolfson Clinical Fellow and is jointly funded by the Medical Research Council and the Motor Neurone Disease Association (MR/R001162/1). BTS is a Rowling - DRI fellow at the University of Edinburgh.
PY - 2021/12
Y1 - 2021/12
N2 - Background: Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation - the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear.Methods: To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling.Results: We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD.Conclusion: These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function.
AB - Background: Physiological disturbances in cortical network excitability and plasticity are established and widespread in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients, including those harbouring the C9ORF72 repeat expansion (C9ORF72RE) mutation - the most common genetic impairment causal to ALS and FTD. Noting that perturbations in cortical function are evidenced pre-symptomatically, and that the cortex is associated with widespread pathology, cortical dysfunction is thought to be an early driver of neurodegenerative disease progression. However, our understanding of how altered network function manifests at the cellular and molecular level is not clear.Methods: To address this we have generated cortical neurons from patient-derived iPSCs harbouring C9ORF72RE mutations, as well as from their isogenic expansion-corrected controls. We have established a model of network activity in these neurons using multi-electrode array electrophysiology. We have then mechanistically examined the physiological processes underpinning network dysfunction using a combination of patch-clamp electrophysiology, immunocytochemistry, pharmacology and transcriptomic profiling.Results: We find that C9ORF72RE causes elevated network burst activity, associated with enhanced synaptic input, yet lower burst duration, attributable to impaired pre-synaptic vesicle dynamics. We also show that the C9ORF72RE is associated with impaired synaptic plasticity. Moreover, RNA-seq analysis revealed dysregulated molecular pathways impacting on synaptic function. All molecular, cellular and network deficits are rescued by CRISPR/Cas9 correction of C9ORF72RE. Our study provides a mechanistic view of the early dysregulated processes that underpin cortical network dysfunction in ALS-FTD.Conclusion: These findings suggest synaptic pathophysiology is widespread in ALS-FTD and has an early and fundamental role in driving altered network function that is thought to contribute to neurodegenerative processes in these patients. The overall importance is the identification of previously unidentified defects in pre and postsynaptic compartments affecting synaptic plasticity, synaptic vesicle stores, and network propagation, which directly impact upon cortical function.
KW - Synaptic
KW - Network
KW - C9ORF72
KW - ALS
KW - FTD
KW - Repeat expansion
KW - Hyperexcitability
KW - Cortical
KW - Neuron
KW - Electrophysiology
UR - http://www.scopus.com/inward/record.url?scp=85102027385&partnerID=8YFLogxK
U2 - 10.1186/s13024-021-00433-8
DO - 10.1186/s13024-021-00433-8
M3 - Article
C2 - 33663561
SN - 1750-1326
VL - 16
JO - Molecular Neurodegeneration
JF - Molecular Neurodegeneration
IS - 1
M1 - 13
ER -