TY - JOUR
T1 - AMP-activated protein kinase mediates phenobarbital induction of CYP2B gene expression in hepatocytes and a newly derived human hepatoma cell line
AU - Rencurel, Franck
AU - Stenhouse, Alasdair
AU - Hawley, Simon A.
AU - Friedberg, Thomas
AU - Hardie, D. Grahame
AU - Sutherland, Calum
AU - Wolf, C. Roland
PY - 2005
Y1 - 2005
N2 - Phenobarbital (PB) administration is known to trigger pleiotropic responses, including liver hypertrophy, tumor promotion, and induction of genes encoding drug-metabolizing enzymes. The induction of human CYP2B6 and the rat (CYP2B1) and mouse (CYP2B1) homologues by PB is mediated by the nuclear receptor constitutive androstane receptor (CAR). The study of CYP2B gene regulation and CAR activity by PB has been difficult due to the lack of a cellular model. In this study, we describe a novel differentiated human hepatoma cell line (WGA), derived from HepG2, which expresses CYP2B6 and CAR. WGA cells represent a powerful system to study the regulation of CYP2B6 gene expression by PB. There is evidence that CAR activity is regulated by phosphorylation and that regulation of some CYP genes depends on the nutritional status of cells. The AMP-activated protein kinase (AMPK) functions as an energy sensor and is activated when cells experience energy-depleting stresses. In this report, we show that addition of 5-amino-imidazole carboxamide riboside, an AMPK activator, to WGA and human hepatocytes induces CYP2B6 gene expression. Expression of a constitutively active form of AMPK mimics the PB induction of CYP2B6 and CYP2B1 gene expression. Conversely, the expression of a dominant negative form of AMPK inhibits the induction of these genes by PB. Finally, we demonstrate, for the first time, that AMPK activity increases in cells cultured with PB. Our data strongly support a role for AMPK in the PB induction of CYP2B gene expression and provide new insights into the regulation of gene expression by barbiturate drugs.
AB - Phenobarbital (PB) administration is known to trigger pleiotropic responses, including liver hypertrophy, tumor promotion, and induction of genes encoding drug-metabolizing enzymes. The induction of human CYP2B6 and the rat (CYP2B1) and mouse (CYP2B1) homologues by PB is mediated by the nuclear receptor constitutive androstane receptor (CAR). The study of CYP2B gene regulation and CAR activity by PB has been difficult due to the lack of a cellular model. In this study, we describe a novel differentiated human hepatoma cell line (WGA), derived from HepG2, which expresses CYP2B6 and CAR. WGA cells represent a powerful system to study the regulation of CYP2B6 gene expression by PB. There is evidence that CAR activity is regulated by phosphorylation and that regulation of some CYP genes depends on the nutritional status of cells. The AMP-activated protein kinase (AMPK) functions as an energy sensor and is activated when cells experience energy-depleting stresses. In this report, we show that addition of 5-amino-imidazole carboxamide riboside, an AMPK activator, to WGA and human hepatocytes induces CYP2B6 gene expression. Expression of a constitutively active form of AMPK mimics the PB induction of CYP2B6 and CYP2B1 gene expression. Conversely, the expression of a dominant negative form of AMPK inhibits the induction of these genes by PB. Finally, we demonstrate, for the first time, that AMPK activity increases in cells cultured with PB. Our data strongly support a role for AMPK in the PB induction of CYP2B gene expression and provide new insights into the regulation of gene expression by barbiturate drugs.
U2 - 10.1074/jbc.M412711200
DO - 10.1074/jbc.M412711200
M3 - Article
C2 - 15572372
SN - 0021-9258
VL - 280
SP - 4367
EP - 4373
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 6
ER -