An implicit characterization of PSPACE

M. Gaboardi, J.-Y. Marion, S.R. Della Rocca

    Research output: Contribution to journalArticlepeer-review

    13 Citations (Scopus)

    Abstract

    We present a type system for an extension of lambda calculus with a conditional construction, named STAB, that characterizes the PSPACE class. This system is obtained by extending STA, a type assignment for lambda-calculus inspired by Lafont's Soft Linear Logic and characterizing the PTIME class. We extend STA by means of a ground type and terms for Booleans and conditional. The key issue in the design of the type system is to manage the contexts in the rule for conditional in an additive way. Thanks to this rule, we are able to program polynomial time Alternating Turing Machines. From the well-known result APTIME = PSPACE, it follows that STA is complete for PSPACE. Conversely, inspired by the simulation of Alternating Turing machines by means of Deterministic Turing machine, we introduce a call-by-name evaluation machine with two memory devices in order to evaluate programs in polynomial space. As far as we know, this is the first characterization of PSPACE that is based on lambda calculus and light logics.
    Original languageEnglish
    Article number18
    JournalACM Transactions on Computational Logic
    Volume13
    Issue number2
    DOIs
    Publication statusPublished - Apr 2012

    Fingerprint

    Dive into the research topics of 'An implicit characterization of PSPACE'. Together they form a unique fingerprint.

    Cite this