TY - JOUR
T1 - An integrated strategy for efficient vector construction and multi-gene expression in Plasmodium falciparum
AU - Wagner, Jeffrey C.
AU - Goldfless, Stephen J.
AU - Ganesan, Suresh M.
AU - Lee, Marcus C.S.
AU - Fidock, David A.
AU - Niles, Jacquin C.
N1 - Funding Information:
We thank Robert M Q Shanks (University of Pittsburgh) for helpful advice on yeast gap repair/homologous recombination cloning, Akhil Vaidya (Drexel University) for providing DSM-1, and Jacobus Pharmaceuticals for providing WR99210. The following reagents were obtained through the MR4 as part of the BEI Resources Repository, NIAID, NIH: Plasmodium falciparum pfGNr malaria expression vector, MRA-462, deposited by C Plowe; and Plasmodium falciparum 3D7-attB, MRA-845, deposited by D A Fidock. JCW was supported by the NIGMS Biotechnology Training Grant 5-T32-GM08334. SJG was supported by the NIEHS Training Grant in Toxicology 5-T32-ES007020. DAF is supported by NIH grants R01 AI50234 and AI085584. JCN is supported by the NIH Director’s New Innovator Award 1DP2OD007124. Funded by a grant from the Bill and Melinda Gates Foundation through the Grand Challenges Explorations initiative (OPP1069759, JCN). Access to Bioanalytical Facilities Core services was supported by the NIEHS Center Grant (P30-ES002109 to the MIT Center for Environmental Health Sciences.
PY - 2013/10/26
Y1 - 2013/10/26
N2 - Background: The construction of plasmid vectors for transgene expression in the malaria parasite, Plasmodium falciparum, presents major technical hurdles. Traditional molecular cloning by restriction and ligation often yields deletions and re-arrangements when assembling low-complexity (A + T)-rich parasite DNA. Furthermore, the use of large 5′-and 3′-untranslated regions of DNA sequence (UTRs) to drive transgene transcription limits the number of expression cassettes that can be incorporated into plasmid vectors. Methods. To address these challenges, two high fidelity cloning strategies, namely yeast homologous recombination and the Gibson assembly method, were evaluated for constructing P. falciparum vectors. Additionally, some general rules for reliably using the viral 2A-like peptide to express multiple proteins from a single expression cassette while preserving their proper trafficking to various subcellular compartments were assessed. Results: Yeast homologous recombination and Gibson assembly were found to be effective strategies for successfully constructing P. falciparum plasmid vectors. Using these cloning methods, a validated family of expression vectors that provide a flexible starting point for user-specific applications was created. These vectors are also compatible with traditional cloning by restriction and ligation, and contain useful combinations of commonly used features for enhancing plasmid segregation and site-specific integration in P. falciparum. Additionally, application of a 2A-like peptide for the synthesis of multiple proteins from a single expression cassette, and some rules for combinatorially directing proteins to discrete subcellular compartments were established. Conclusions: A set of freely available, sequence-verified and functionally validated parts that offer greater flexibility for constructing P. falciparum vectors having expanded expression capacity is provided.
AB - Background: The construction of plasmid vectors for transgene expression in the malaria parasite, Plasmodium falciparum, presents major technical hurdles. Traditional molecular cloning by restriction and ligation often yields deletions and re-arrangements when assembling low-complexity (A + T)-rich parasite DNA. Furthermore, the use of large 5′-and 3′-untranslated regions of DNA sequence (UTRs) to drive transgene transcription limits the number of expression cassettes that can be incorporated into plasmid vectors. Methods. To address these challenges, two high fidelity cloning strategies, namely yeast homologous recombination and the Gibson assembly method, were evaluated for constructing P. falciparum vectors. Additionally, some general rules for reliably using the viral 2A-like peptide to express multiple proteins from a single expression cassette while preserving their proper trafficking to various subcellular compartments were assessed. Results: Yeast homologous recombination and Gibson assembly were found to be effective strategies for successfully constructing P. falciparum plasmid vectors. Using these cloning methods, a validated family of expression vectors that provide a flexible starting point for user-specific applications was created. These vectors are also compatible with traditional cloning by restriction and ligation, and contain useful combinations of commonly used features for enhancing plasmid segregation and site-specific integration in P. falciparum. Additionally, application of a 2A-like peptide for the synthesis of multiple proteins from a single expression cassette, and some rules for combinatorially directing proteins to discrete subcellular compartments were established. Conclusions: A set of freely available, sequence-verified and functionally validated parts that offer greater flexibility for constructing P. falciparum vectors having expanded expression capacity is provided.
UR - http://www.scopus.com/inward/record.url?scp=84886175099&partnerID=8YFLogxK
U2 - 10.1186/1475-2875-12-373
DO - 10.1186/1475-2875-12-373
M3 - Article
C2 - 24160265
AN - SCOPUS:84886175099
SN - 1475-2875
VL - 12
JO - Malaria Journal
JF - Malaria Journal
M1 - 373
ER -