### Abstract

In this paper, we develop a continuous finite element method for the curlcurl-grad div vector second-order elliptic problem in a three-dimensional polyhedral domain occupied by discontinuous nonhomogeneous anisotropic materials. In spite of the fact that the curlcurl-grad div interface problem is closely related to the elliptic interface problem of vector Laplace operator type, the continuous finite element discretization of the standard variational problem of the former generally fails to give a correct solution even in the case of homogeneous media whenever the physical domain has reentrant corners and edges. To discretize the curlcurl-grad div interface problem by the continuous finite element method, we apply an element-local L2 projector to the curl operator and a pseudo-local L2 projector to the div operator, where the continuous Lagrange linear element enriched by suitable element and face bubbles may be employed. It is shown that the finite element problem retains the same coercivity property as the continuous problem. An error estimate O(hr) in an energy norm is obtained between the analytical solution and the continuous finite element solution, where the analytical solution is in ?Ll=1(Hr(Ol))3 for some r?(1/2,1] due to the domain boundary reentrant corners and edges (e.g., nonconvex polyhedron) and due to the interfaces between the different material domains in O=?Ll=1Ol .

Original language | English |
---|---|

Pages (from-to) | 1-37 |

Number of pages | 37 |

Journal | Numerische Mathematik |

Early online date | 14 Oct 2012 |

DOIs | |

Publication status | Published - 2013 |

## Fingerprint Dive into the research topics of 'Analysis of a continuous finite element method for H(curl,div)-elliptic interface problem'. Together they form a unique fingerprint.

## Cite this

Duan, H., Lin, P., & Tan, R. C. E. (2013). Analysis of a continuous finite element method for H(curl,div)-elliptic interface problem.

*Numerische Mathematik*, 1-37. https://doi.org/10.1007/s00211-012-0500-x