Animal models of nociception

Daniel Le Bars, Manuela Gozariu, Samuel W. Cadden

    Research output: Contribution to journalArticlepeer-review

    1710 Citations (Scopus)


    The study of pain in awake animals raises ethical, philosophical, and technical problems. We review the ethical standards for studying pain in animals and emphasize that there are scientific as well as moral reasons for keeping to them. Philosophically, there is the problem that pain cannot be monitored directly in animals but can only be estimated by examining their responses to nociceptive stimuli; however, such responses do not necessarily mean that there is a concomitant sensation. The types of nociceptive stimuli (electrical, thermal, mechanical, or chemical) that have been used in different pain models are reviewed with the conclusion that none is ideal, although chemical stimuli probably most closely mimic acute clinical pain. The monitored reactions are almost always motor responses ranging from spinal reflexes to complex behaviors. Most have the weakness that they may be associated with, or modulated by, other physiological functions. The main tests are critically reviewed in terms of their sensitivity, specificity, and predictiveness. Weaknesses are highlighted, including 1) that in most tests responses are monitored around a nociceptive threshold, whereas clinical pain is almost always more severe; 2) differences in the fashion whereby responses are evoked from healthy and inflamed tissues; and 3) problems in assessing threshold responses to stimuli, which continue to increase in intensity. It is concluded that although the neural basis of the most used tests is poorly understood, their use will be more profitable if pain is considered within, rather than apart from, the body's homeostatic mechanisms.
    Original languageEnglish
    Pages (from-to)597-652
    Number of pages56
    JournalPharmacological Reviews
    Issue number4
    Publication statusPublished - 2001


    Dive into the research topics of 'Animal models of nociception'. Together they form a unique fingerprint.

    Cite this