Antigenic variation in Trypanosoma brucei: a telomeric expression site for variant-specific surface glycoprotein genes with novel features

Joost C. B. M. Zomerdijk, Rudo Kieft, Monique Duyndam, Paul G. Shiels, Piet Borst

    Research output: Contribution to journalArticlepeer-review

    50 Citations (Scopus)


    African trypanosomes evade the immune response of their host by periodically changing their variant surface glycoprotein (VSG) coat. Each coat is encoded by a separate VSG gene. Expressed genes are in a telomeric expression site (ES) and there are several sites in each trypanosome. To study the transcription control of VSG genes in Trypanosoma brucei we have analyzed an ES, called the dominant ES (DES), that readily switches off and on. The promoter area of the DES is very similar to that of the 221 ES (Zomerdijk et al., 1990). It can be switched off and on in vivo without detectable DNA alterations in the vicinity of the transcription start and it can drive high transient expression of a reporter gene in transfection experiments. However, there are also two major differences between the DES and the 221 ES. First, one version of the DES contains an additional upstream transcription unit overlapping the VSG gene ES promoter. The presence of this upstream transcription is dispensable, however, for the VSG gene ES promoter is active, even if transcription through this start from the upstream promoter is blocked using UV light. Moreover, a second version of the DES present in another trypanosome variant does not produce these upstream transcripts. Secondly, we find that the inactivation of DES transcription in one trypanosome variant is accompanied by DNA alterations in the DES upstream (> 2 kb) of the transcription start; reactivation of DES transcription is accompanied by another alteration far upstream. Although we cannot exclude that these DNA rearrangements are incidental, our results raise the possibility that the activity of ES promoters is negatively controlled in cis by far upstream sequences not included in transfection constructs and that alterations in these sequences may lead to (in)activation of the promoter.

    Original languageEnglish
    Pages (from-to)1359-1368
    Number of pages10
    JournalNucleic Acids Research
    Issue number7
    Publication statusPublished - 1991

    Cite this