TY - JOUR
T1 - Assessing the Karakoram Anomaly from long-term trends in earth observation and climate data
AU - Ougahi, Jamal Hassan
AU - Cutler, Mark E.J.
AU - Cook, Simon J.
N1 - Publisher Copyright:
© 2022
PY - 2022/11
Y1 - 2022/11
N2 - In contrast to the general trend of global glacier recession, several studies have reported stable or advancing glaciers in the sub-basins of the Karakoram – the so-called ‘Karakoram Anomaly’. Snow and glacier ice melt are important components of the hydrological system and represent a major water supply for the region. In the absence of reliable and comprehensive in situ measurements, Earth observation (EO) and remote sensing retrievals of snow water equivalent (SWE), water balance (WB) and hydro-meteorological variables can be used to infer changes in snow/glacier melting. We used linear regression and Mann-Kendall (MK) methods to assess trends in annual and seasonal variables derived from satellite, gridded and reanalysis datasets of the Global Land Data Assimilation System (GLDAS) and Terraclimate. The spatial and temporal pattern of snow accumulation and ablation varies across the study region. The spatial distribution of annual and winter SWE showed a significant (p < 0.05) positive trend in the western Karakoram. This snow accumulation may be attributed to a significant decrease in summertime maximum temperature (Tmax) in the western Karakoram. By contrast, in the eastern Karakoram, significant negative trends in annual WB indicate depletion of water storage. These results, using a different dataset and approach, are consistent with previous studies where glacier mass balances have been found to be stable or positive in the Karakoram, but become more negative further east and into the Himalaya. These changes in hydrology at highly glacierised catchments have considerable implications for water availability and supply to large downstream populations.
AB - In contrast to the general trend of global glacier recession, several studies have reported stable or advancing glaciers in the sub-basins of the Karakoram – the so-called ‘Karakoram Anomaly’. Snow and glacier ice melt are important components of the hydrological system and represent a major water supply for the region. In the absence of reliable and comprehensive in situ measurements, Earth observation (EO) and remote sensing retrievals of snow water equivalent (SWE), water balance (WB) and hydro-meteorological variables can be used to infer changes in snow/glacier melting. We used linear regression and Mann-Kendall (MK) methods to assess trends in annual and seasonal variables derived from satellite, gridded and reanalysis datasets of the Global Land Data Assimilation System (GLDAS) and Terraclimate. The spatial and temporal pattern of snow accumulation and ablation varies across the study region. The spatial distribution of annual and winter SWE showed a significant (p < 0.05) positive trend in the western Karakoram. This snow accumulation may be attributed to a significant decrease in summertime maximum temperature (Tmax) in the western Karakoram. By contrast, in the eastern Karakoram, significant negative trends in annual WB indicate depletion of water storage. These results, using a different dataset and approach, are consistent with previous studies where glacier mass balances have been found to be stable or positive in the Karakoram, but become more negative further east and into the Himalaya. These changes in hydrology at highly glacierised catchments have considerable implications for water availability and supply to large downstream populations.
KW - Climate change
KW - Mann-kendall
KW - Remote sensing
KW - Snow water equivalent
UR - http://www.scopus.com/inward/record.url?scp=85140344900&partnerID=8YFLogxK
U2 - 10.1016/j.rsase.2022.100852
DO - 10.1016/j.rsase.2022.100852
M3 - Article
AN - SCOPUS:85140344900
VL - 28
JO - Remote Sensing Applications: Society and Environment
JF - Remote Sensing Applications: Society and Environment
SN - 2352-9385
M1 - 100852
ER -