TY - JOUR
T1 - Bio-fortification of potato tubers using foliar zinc-fertiliser
AU - White, Philip J.
AU - Broadley, Martin R.
AU - Hammond, John P.
AU - Ramsay, Gavin
AU - Subramanian, Nithya K.
AU - Thompson, Jacqueline
AU - Wright, Gladys
PY - 2012/3
Y1 - 2012/3
N2 - Worldwide, many people are zinc (Zn)-deficient. Dietary Zn intake can be increased by producing crops with higher concentrations of Zn in their edible portions. This can be achieved by applying Zn-fertilisers to varieties with an increased ability to acquire Zn and to accumulate Zn in their edible portions. Potato (Solanum tuberosum L.) is an important food crop and is, therefore, a target for bio-fortification with Zn. Field trials incorporating a core collection of 23 potato genotypes, performed over 4 years (2006 - 2009), indicated significant genotypic effects on tuber Zn concentration and suggested that tuber Zn concentration was influenced by environmental effects, but also found that genotype x environment (G x E) interactions were not significant. Tuber Zn concentrations averaged 10.8 mg kg(-1) dry matter (DM), and the ratio between the lowest and the highest varietal tuber Zn-concentration averaged 1.76. Tuber Zn concentrations could be increased by foliar Zn-fertilisation. Tuber yields of 'Maris Piper' were unaffected by foliar applications of < 1.08 g Zn plant(-1). The relationship between tuber Zn concentration and foliar Zn application followed a saturation curve, reaching a maximum at approx. 30 mg Zn kg(-1) DM at a foliar Zn application rate of 1.08 g plant(-1). Despite a 40-fold increase in shoot Zn concentration compared to the unfertilised controls following foliar Zn-fertilisation with 2.16 g Zn plant(-1), only a doubling in tuber Zn concentration was observed. This suggests that the bio-fortification of tubers with Zn was restricted by the limited mobility of Zn in the phloem. A significant positive linear relationship between tuber Zn concentration and tuber N concentration supported the hypothesis of co-transport of Zn and N-compounds in the phloem.
AB - Worldwide, many people are zinc (Zn)-deficient. Dietary Zn intake can be increased by producing crops with higher concentrations of Zn in their edible portions. This can be achieved by applying Zn-fertilisers to varieties with an increased ability to acquire Zn and to accumulate Zn in their edible portions. Potato (Solanum tuberosum L.) is an important food crop and is, therefore, a target for bio-fortification with Zn. Field trials incorporating a core collection of 23 potato genotypes, performed over 4 years (2006 - 2009), indicated significant genotypic effects on tuber Zn concentration and suggested that tuber Zn concentration was influenced by environmental effects, but also found that genotype x environment (G x E) interactions were not significant. Tuber Zn concentrations averaged 10.8 mg kg(-1) dry matter (DM), and the ratio between the lowest and the highest varietal tuber Zn-concentration averaged 1.76. Tuber Zn concentrations could be increased by foliar Zn-fertilisation. Tuber yields of 'Maris Piper' were unaffected by foliar applications of < 1.08 g Zn plant(-1). The relationship between tuber Zn concentration and foliar Zn application followed a saturation curve, reaching a maximum at approx. 30 mg Zn kg(-1) DM at a foliar Zn application rate of 1.08 g plant(-1). Despite a 40-fold increase in shoot Zn concentration compared to the unfertilised controls following foliar Zn-fertilisation with 2.16 g Zn plant(-1), only a doubling in tuber Zn concentration was observed. This suggests that the bio-fortification of tubers with Zn was restricted by the limited mobility of Zn in the phloem. A significant positive linear relationship between tuber Zn concentration and tuber N concentration supported the hypothesis of co-transport of Zn and N-compounds in the phloem.
M3 - Article
SN - 1462-0316
VL - 87
SP - 123
EP - 129
JO - Journal of Horticultural Science and Biotechnology
JF - Journal of Horticultural Science and Biotechnology
IS - 2
ER -