Abstract
Developing predictive intelligence in neuroscience for learning how to generate multimodal medical data from a single modality can improve neurological disorder diagnosis with minimal data acquisition resources. Existing deep learning frameworks are mainly tailored for images, which might fail in handling geometric data (e.g., brain graphs). Specifically, predicting a target brain graph from a single source brain graph remains largely unexplored. Solving such problem is generally challenged with domain fracturecaused by the difference in distribution between source and target domains. Besides, solving the prediction and domain fracture independently might not be optimal for both tasks. To address these challenges, we unprecedentedly propose a Learning-guided Graph Dual Adversarial Domain Alignment (LG-DADA) framework for predicting a target brain graph from a source brain graph. The proposed LG-DADA is grounded in three fundamental contributions: (1) a source data pre-clustering step using manifold learning to firstly handle source data heterogeneity and secondly circumvent mode collapse in generative adversarial learning, (2) a domain alignment of source domain to the target domain by adversarially learning their latent representations, and (3) a dual adversarial regularization that jointly learns a source embedding of training and testing brain graphs using two discriminators and predict the training target graphs. Results on morphological brain graphs synthesis showed that our method produces better prediction accuracy and visual quality as compared to other graph synthesis methods.
Original language | English |
---|---|
Article number | 101902 |
Number of pages | 13 |
Journal | Medical Image Analysis |
Volume | 68 |
Early online date | 16 Nov 2020 |
DOIs | |
Publication status | Published - Feb 2021 |
Keywords
- Brain graph prediction
- Domain alignment
- Generative adversarial learning
- Geometric deep learning
- Dual adversarial learning
- Adversarial autoencoders
ASJC Scopus subject areas
- Radiological and Ultrasound Technology
- Health Informatics
- Radiology Nuclear Medicine and imaging
- Computer Vision and Pattern Recognition
- Computer Graphics and Computer-Aided Design