Carbohydrate quality and human health

a series of systematic reviews and meta-analyses

Andrew Reynolds, Jim Mann (Lead / Corresponding author), John Cummings, Nicola Winter, Evelyn Mete, Lisa Te Morenga

Research output: Contribution to journalArticle

29 Citations (Scopus)
64 Downloads (Pure)

Abstract

Background: Previous systematic reviews and meta-analyses explaining the relationship between carbohydrate quality and health have usually examined a single marker and a limited number of clinical outcomes. We aimed to more precisely quantify the predictive potential of several markers, to determine which markers are most useful, and to establish an evidence base for quantitative recommendations for intakes of dietary fibre.

Methods: We did a series of systematic reviews and meta-analyses of prospective studies published from database inception to April 30, 2017, and randomised controlled trials published from database inception to Feb 28, 2018, which reported on indicators of carbohydrate quality and non-communicable disease incidence, mortality, and risk factors. Studies were identified by searches in PubMed, Ovid MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials, and by hand searching of previous publications. We excluded prospective studies and trials reporting on participants with a chronic disease, and weight loss trials or trials involving supplements. Searches, data extraction, and bias assessment were duplicated independently. Robustness of pooled estimates from random-effects models was considered with sensitivity analyses, meta-regression, dose-response testing, and subgroup analyses. The GRADE approach was used to assess quality of evidence.

Findings: Just under 135 million person-years of data from 185 prospective studies and 58 clinical trials with 4635 adult participants were included in the analyses. Observational data suggest a 15-30% decrease in all-cause and cardiovascular related mortality, and incidence of coronary heart disease, stroke incidence and mortality, type 2 diabetes, and colorectal cancer when comparing the highest dietary fibre consumers with the lowest consumers Clinical trials show significantly lower bodyweight, systolic blood pressure, and total cholesterol when comparing higher with lower intakes of dietary fibre. Risk reduction associated with a range of critical outcomes was greatest when daily intake of dietary fibre was between 25 g and 29 g. Dose-response curves suggested that higher intakes of dietary fibre could confer even greater benefit to protect against cardiovascular diseases, type 2 diabetes, and colorectal and breast cancer. Similar findings for whole grain intake were observed. Smaller or no risk reductions were found with the observational data when comparing the effects of diets characterised by low rather than higher glycaemic index or load. The certainty of evidence for relationships between carbohydrate quality and critical outcomes was graded as moderate for dietary fibre, low to moderate for whole grains, and low to very low for dietary glycaemic index and glycaemic load. Data relating to other dietary exposures are scarce.

Interpretation: Findings from prospective studies and clinical trials associated with relatively high intakes of dietary fibre and whole grains were complementary, and striking dose-response evidence indicates that the relationships to several non-communicable diseases could be causal. Implementation of recommendations to increase dietary fibre intake and to replace refined grains with whole grains is expected to benefit human health. A major strength of the study was the ability to examine key indicators of carbohydrate quality in relation to a range of non-communicable disease outcomes from cohort studies and randomised trials in a single study. Our findings are limited to risk reduction in the population at large rather than those with chronic disease.

Original languageEnglish
Pages (from-to)434-445
Number of pages12
JournalLancet
Volume393
Issue number10170
Early online date10 Jan 2019
DOIs
Publication statusPublished - 2 Feb 2019

Fingerprint

Dietary Fiber
Meta-Analysis
Carbohydrates
Health
Risk Reduction Behavior
Prospective Studies
Glycemic Index
Clinical Trials
Type 2 Diabetes Mellitus
Mortality
Colorectal Neoplasms
Incidence
Chronic Disease
Databases
Blood Pressure
Aptitude
Insurance Benefits
PubMed
MEDLINE
Coronary Disease

Cite this

Reynolds, A., Mann, J., Cummings, J., Winter, N., Mete, E., & Te Morenga, L. (2019). Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet, 393(10170), 434-445. https://doi.org/10.1016/S0140-6736(18)31809-9
Reynolds, Andrew ; Mann, Jim ; Cummings, John ; Winter, Nicola ; Mete, Evelyn ; Te Morenga, Lisa. / Carbohydrate quality and human health : a series of systematic reviews and meta-analyses. In: Lancet. 2019 ; Vol. 393, No. 10170. pp. 434-445.
@article{4437e29180f747e394a9628f262b0c6f,
title = "Carbohydrate quality and human health: a series of systematic reviews and meta-analyses",
abstract = "Background: Previous systematic reviews and meta-analyses explaining the relationship between carbohydrate quality and health have usually examined a single marker and a limited number of clinical outcomes. We aimed to more precisely quantify the predictive potential of several markers, to determine which markers are most useful, and to establish an evidence base for quantitative recommendations for intakes of dietary fibre.Methods: We did a series of systematic reviews and meta-analyses of prospective studies published from database inception to April 30, 2017, and randomised controlled trials published from database inception to Feb 28, 2018, which reported on indicators of carbohydrate quality and non-communicable disease incidence, mortality, and risk factors. Studies were identified by searches in PubMed, Ovid MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials, and by hand searching of previous publications. We excluded prospective studies and trials reporting on participants with a chronic disease, and weight loss trials or trials involving supplements. Searches, data extraction, and bias assessment were duplicated independently. Robustness of pooled estimates from random-effects models was considered with sensitivity analyses, meta-regression, dose-response testing, and subgroup analyses. The GRADE approach was used to assess quality of evidence.Findings: Just under 135 million person-years of data from 185 prospective studies and 58 clinical trials with 4635 adult participants were included in the analyses. Observational data suggest a 15-30{\%} decrease in all-cause and cardiovascular related mortality, and incidence of coronary heart disease, stroke incidence and mortality, type 2 diabetes, and colorectal cancer when comparing the highest dietary fibre consumers with the lowest consumers Clinical trials show significantly lower bodyweight, systolic blood pressure, and total cholesterol when comparing higher with lower intakes of dietary fibre. Risk reduction associated with a range of critical outcomes was greatest when daily intake of dietary fibre was between 25 g and 29 g. Dose-response curves suggested that higher intakes of dietary fibre could confer even greater benefit to protect against cardiovascular diseases, type 2 diabetes, and colorectal and breast cancer. Similar findings for whole grain intake were observed. Smaller or no risk reductions were found with the observational data when comparing the effects of diets characterised by low rather than higher glycaemic index or load. The certainty of evidence for relationships between carbohydrate quality and critical outcomes was graded as moderate for dietary fibre, low to moderate for whole grains, and low to very low for dietary glycaemic index and glycaemic load. Data relating to other dietary exposures are scarce.Interpretation: Findings from prospective studies and clinical trials associated with relatively high intakes of dietary fibre and whole grains were complementary, and striking dose-response evidence indicates that the relationships to several non-communicable diseases could be causal. Implementation of recommendations to increase dietary fibre intake and to replace refined grains with whole grains is expected to benefit human health. A major strength of the study was the ability to examine key indicators of carbohydrate quality in relation to a range of non-communicable disease outcomes from cohort studies and randomised trials in a single study. Our findings are limited to risk reduction in the population at large rather than those with chronic disease.",
author = "Andrew Reynolds and Jim Mann and John Cummings and Nicola Winter and Evelyn Mete and {Te Morenga}, Lisa",
note = "This Article was supported by funding from the Health Research Council of New Zealand; WHO; Riddet Centre of Research Excellence; Healthier Lives National Science Challenge; Department of Medicine, University of Otago, New Zealand; and the Otago Southland Diabetes Research Trust.",
year = "2019",
month = "2",
day = "2",
doi = "10.1016/S0140-6736(18)31809-9",
language = "English",
volume = "393",
pages = "434--445",
journal = "Lancet",
issn = "0140-6736",
number = "10170",

}

Reynolds, A, Mann, J, Cummings, J, Winter, N, Mete, E & Te Morenga, L 2019, 'Carbohydrate quality and human health: a series of systematic reviews and meta-analyses', Lancet, vol. 393, no. 10170, pp. 434-445. https://doi.org/10.1016/S0140-6736(18)31809-9

Carbohydrate quality and human health : a series of systematic reviews and meta-analyses. / Reynolds, Andrew; Mann, Jim (Lead / Corresponding author); Cummings, John; Winter, Nicola; Mete, Evelyn; Te Morenga, Lisa.

In: Lancet, Vol. 393, No. 10170, 02.02.2019, p. 434-445.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Carbohydrate quality and human health

T2 - a series of systematic reviews and meta-analyses

AU - Reynolds, Andrew

AU - Mann, Jim

AU - Cummings, John

AU - Winter, Nicola

AU - Mete, Evelyn

AU - Te Morenga, Lisa

N1 - This Article was supported by funding from the Health Research Council of New Zealand; WHO; Riddet Centre of Research Excellence; Healthier Lives National Science Challenge; Department of Medicine, University of Otago, New Zealand; and the Otago Southland Diabetes Research Trust.

PY - 2019/2/2

Y1 - 2019/2/2

N2 - Background: Previous systematic reviews and meta-analyses explaining the relationship between carbohydrate quality and health have usually examined a single marker and a limited number of clinical outcomes. We aimed to more precisely quantify the predictive potential of several markers, to determine which markers are most useful, and to establish an evidence base for quantitative recommendations for intakes of dietary fibre.Methods: We did a series of systematic reviews and meta-analyses of prospective studies published from database inception to April 30, 2017, and randomised controlled trials published from database inception to Feb 28, 2018, which reported on indicators of carbohydrate quality and non-communicable disease incidence, mortality, and risk factors. Studies were identified by searches in PubMed, Ovid MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials, and by hand searching of previous publications. We excluded prospective studies and trials reporting on participants with a chronic disease, and weight loss trials or trials involving supplements. Searches, data extraction, and bias assessment were duplicated independently. Robustness of pooled estimates from random-effects models was considered with sensitivity analyses, meta-regression, dose-response testing, and subgroup analyses. The GRADE approach was used to assess quality of evidence.Findings: Just under 135 million person-years of data from 185 prospective studies and 58 clinical trials with 4635 adult participants were included in the analyses. Observational data suggest a 15-30% decrease in all-cause and cardiovascular related mortality, and incidence of coronary heart disease, stroke incidence and mortality, type 2 diabetes, and colorectal cancer when comparing the highest dietary fibre consumers with the lowest consumers Clinical trials show significantly lower bodyweight, systolic blood pressure, and total cholesterol when comparing higher with lower intakes of dietary fibre. Risk reduction associated with a range of critical outcomes was greatest when daily intake of dietary fibre was between 25 g and 29 g. Dose-response curves suggested that higher intakes of dietary fibre could confer even greater benefit to protect against cardiovascular diseases, type 2 diabetes, and colorectal and breast cancer. Similar findings for whole grain intake were observed. Smaller or no risk reductions were found with the observational data when comparing the effects of diets characterised by low rather than higher glycaemic index or load. The certainty of evidence for relationships between carbohydrate quality and critical outcomes was graded as moderate for dietary fibre, low to moderate for whole grains, and low to very low for dietary glycaemic index and glycaemic load. Data relating to other dietary exposures are scarce.Interpretation: Findings from prospective studies and clinical trials associated with relatively high intakes of dietary fibre and whole grains were complementary, and striking dose-response evidence indicates that the relationships to several non-communicable diseases could be causal. Implementation of recommendations to increase dietary fibre intake and to replace refined grains with whole grains is expected to benefit human health. A major strength of the study was the ability to examine key indicators of carbohydrate quality in relation to a range of non-communicable disease outcomes from cohort studies and randomised trials in a single study. Our findings are limited to risk reduction in the population at large rather than those with chronic disease.

AB - Background: Previous systematic reviews and meta-analyses explaining the relationship between carbohydrate quality and health have usually examined a single marker and a limited number of clinical outcomes. We aimed to more precisely quantify the predictive potential of several markers, to determine which markers are most useful, and to establish an evidence base for quantitative recommendations for intakes of dietary fibre.Methods: We did a series of systematic reviews and meta-analyses of prospective studies published from database inception to April 30, 2017, and randomised controlled trials published from database inception to Feb 28, 2018, which reported on indicators of carbohydrate quality and non-communicable disease incidence, mortality, and risk factors. Studies were identified by searches in PubMed, Ovid MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials, and by hand searching of previous publications. We excluded prospective studies and trials reporting on participants with a chronic disease, and weight loss trials or trials involving supplements. Searches, data extraction, and bias assessment were duplicated independently. Robustness of pooled estimates from random-effects models was considered with sensitivity analyses, meta-regression, dose-response testing, and subgroup analyses. The GRADE approach was used to assess quality of evidence.Findings: Just under 135 million person-years of data from 185 prospective studies and 58 clinical trials with 4635 adult participants were included in the analyses. Observational data suggest a 15-30% decrease in all-cause and cardiovascular related mortality, and incidence of coronary heart disease, stroke incidence and mortality, type 2 diabetes, and colorectal cancer when comparing the highest dietary fibre consumers with the lowest consumers Clinical trials show significantly lower bodyweight, systolic blood pressure, and total cholesterol when comparing higher with lower intakes of dietary fibre. Risk reduction associated with a range of critical outcomes was greatest when daily intake of dietary fibre was between 25 g and 29 g. Dose-response curves suggested that higher intakes of dietary fibre could confer even greater benefit to protect against cardiovascular diseases, type 2 diabetes, and colorectal and breast cancer. Similar findings for whole grain intake were observed. Smaller or no risk reductions were found with the observational data when comparing the effects of diets characterised by low rather than higher glycaemic index or load. The certainty of evidence for relationships between carbohydrate quality and critical outcomes was graded as moderate for dietary fibre, low to moderate for whole grains, and low to very low for dietary glycaemic index and glycaemic load. Data relating to other dietary exposures are scarce.Interpretation: Findings from prospective studies and clinical trials associated with relatively high intakes of dietary fibre and whole grains were complementary, and striking dose-response evidence indicates that the relationships to several non-communicable diseases could be causal. Implementation of recommendations to increase dietary fibre intake and to replace refined grains with whole grains is expected to benefit human health. A major strength of the study was the ability to examine key indicators of carbohydrate quality in relation to a range of non-communicable disease outcomes from cohort studies and randomised trials in a single study. Our findings are limited to risk reduction in the population at large rather than those with chronic disease.

U2 - 10.1016/S0140-6736(18)31809-9

DO - 10.1016/S0140-6736(18)31809-9

M3 - Article

VL - 393

SP - 434

EP - 445

JO - Lancet

JF - Lancet

SN - 0140-6736

IS - 10170

ER -

Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet. 2019 Feb 2;393(10170):434-445. https://doi.org/10.1016/S0140-6736(18)31809-9