Abstract
Objective: Intracellular Na rises rapidly during cardiac ischemia and this has been attributed to the combination of increased influx of Na via sodium–proton exchange and decreased activity of the Na/K ATPase. The aim of these studies was to investigate the effects of ischemia on Na/K ATPase function in Langendorff-perfused rat hearts. Methods: Na/K ATPase activity was determined by measuring ouabain-sensitive phosphate generation from ATP by cardiac homogenates. Results: Global ischemia (15 and 30 min) caused a substantial reduction in Na/K ATPase function despite high substrate availability in the assay. When sarcolemmal membranes were purified away from the cytosol a profound activation of the Na/K ATPase was revealed following ischemia, indicating that the inhibition was due to the cytosolic accumulation of an inhibitor of Na/K ATPase. The half-life of the inhibitor in cardiac homogenates was 10±3 min at room temperature. Perfusion with the antioxidant MPG (1 mmol/l) reduced the accumulation of this inhibitor, however MPG was without effect on Na/K ATPase function when added directly to the Na/K ATPase activity assay. While the inhibitor reduced the activity of cardiac and brain forms of the Na/K ATPase in bioassay experiments, no effect was observed on the renal and skeletal muscle forms of the enzyme. Conclusions: An unstable cardiac and brain-specific inhibitor of the Na/K ATPase whose production is linked to oxidant stress, accumulates intracellularly during ischemia. Intracellular Na is a primary determinant of electro-mechanical recovery on reperfusion, so inhibition of the Na/K ATPase by this compound may be crucial in determining recovery from ischemia.
Original language | English |
---|---|
Pages (from-to) | 1044-1051 |
Number of pages | 8 |
Journal | Cardiovascular Research |
Volume | 57 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2003 |
Keywords
- Ion pumps
- Ion transport
- Ischemia
- Membrane transport
- Na/K pump