Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling

Barna Dudok, László Barna, Marco Ledri, Szilárd I Szabó, Eszter Szabadits, Balázs Pintér, Stephen G Woodhams, Christopher M Henstridge, Gyula Y Balla, Rita Nyilas, Csaba Varga, Sang-Hun Lee, Máté Matolcsi, Judit Cervenak, Imre Kacskovics, Masahiko Watanabe, Claudia Sagheddu, Miriam Melis, Marco Pistis, Ivan SolteszIstván Katona

    Research output: Contribution to journalArticlepeer-review

    193 Citations (Scopus)

    Abstract

    A major challenge in neuroscience is to determine the nanoscale position and quantity of signaling molecules in a cell type- and subcellular compartment-specific manner. We developed a new approach to this problem by combining cell-specific physiological and anatomical characterization with super-resolution imaging and studied the molecular and structural parameters shaping the physiological properties of synaptic endocannabinoid signaling in the mouse hippocampus. We found that axon terminals of perisomatically projecting GABAergic interneurons possessed increased CB1 receptor number, active-zone complexity and receptor/effector ratio compared with dendritically projecting interneurons, consistent with higher efficiency of cannabinoid signaling at somatic versus dendritic synapses. Furthermore, chronic Δ(9)-tetrahydrocannabinol administration, which reduces cannabinoid efficacy on GABA release, evoked marked CB1 downregulation in a dose-dependent manner. Full receptor recovery required several weeks after the cessation of Δ(9)-tetrahydrocannabinol treatment. These findings indicate that cell type-specific nanoscale analysis of endogenous protein distribution is possible in brain circuits and identify previously unknown molecular properties controlling endocannabinoid signaling and cannabis-induced cognitive dysfunction.
    Original languageEnglish
    Pages (from-to)75-86
    Number of pages12
    JournalNature Neuroscience
    Volume18
    Issue number1
    DOIs
    Publication statusPublished - Jan 2015

    Keywords

    • Animals
    • Cannabinoids
    • Dose-Response Relationship, Drug
    • HEK293 Cells
    • Hippocampus
    • Humans
    • Image Processing, Computer-Assisted
    • Interneurons
    • Male
    • Mice
    • Mice, Inbred C57BL
    • Neuroimaging
    • Presynaptic Terminals
    • Receptor, Cannabinoid, CB1
    • Receptors, Cannabinoid
    • Signal Transduction
    • Synapses
    • gamma-Aminobutyric Acid

    Fingerprint

    Dive into the research topics of 'Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling'. Together they form a unique fingerprint.

    Cite this