TY - JOUR
T1 - Cell temperature measurements in micro-tubular, single-chamber, solid oxide fuel cells (MT-SC-SOFCs)
AU - Akhtar, N.
AU - Decent, S. P.
AU - Kendall, K.
PY - 2010/12/1
Y1 - 2010/12/1
N2 - Anode supported, micro-tubular, solid oxide fuel cells made of nickel, yttria-stabilized zirconia (Ni-YSZ) anode, yttria-stabilized zirconia (YSZ) electrolyte and lanthanum strontium manganite (LSM) cathode have been prepared and operated under single-chamber conditions. Four different cells with varying cathode location/size, i.e. inlet, center, outlet and full size have been compared. The highest temperature rise of similar to 93 degrees C and the highest power density of similar to 36 mW cm(-2) (at a furnace temperature of 750 degrees C with methane/air = 25/60 mL min(-1)) was observed in the case of cathode-inlet configuration. The scanning electron microscope (SEM) analysis shows that both the anode and cathode were badly damaged near the cell inlet in case of cathode-inlet configuration. On the contrary, both of the electrodes remained undamaged in case of cathode-outlet configuration. (C) 2009 Elsevier B.V. All rights reserved.
AB - Anode supported, micro-tubular, solid oxide fuel cells made of nickel, yttria-stabilized zirconia (Ni-YSZ) anode, yttria-stabilized zirconia (YSZ) electrolyte and lanthanum strontium manganite (LSM) cathode have been prepared and operated under single-chamber conditions. Four different cells with varying cathode location/size, i.e. inlet, center, outlet and full size have been compared. The highest temperature rise of similar to 93 degrees C and the highest power density of similar to 36 mW cm(-2) (at a furnace temperature of 750 degrees C with methane/air = 25/60 mL min(-1)) was observed in the case of cathode-inlet configuration. The scanning electron microscope (SEM) analysis shows that both the anode and cathode were badly damaged near the cell inlet in case of cathode-inlet configuration. On the contrary, both of the electrodes remained undamaged in case of cathode-outlet configuration. (C) 2009 Elsevier B.V. All rights reserved.
U2 - 10.1016/j.jpowsour.2009.04.078
DO - 10.1016/j.jpowsour.2009.04.078
M3 - Article
SN - 0378-7753
VL - 195
SP - 7818
EP - 7824
JO - Journal of Power Sources
JF - Journal of Power Sources
IS - 23
ER -