TY - JOUR
T1 - Changes in Small Airway Physiology Measured by Impulse Oscillometry in Subjects with Allergic Asthma Following Methacholine and Inhaled Allergen Challenge
AU - Stenberg, Henning
AU - Chan, Rory
AU - Abd-Elaziz, Khalid
AU - Pelgröm, Arjen
AU - Lammering, Karin
AU - Kuijper-De Haan, Gerda
AU - Weersink, Els
AU - Lutter, René
AU - Zwinderman, Aeilko H.
AU - de Jongh, Frans
AU - Diamant, Zuzana
N1 - © 2025 by the authors.
PY - 2025/1/30
Y1 - 2025/1/30
N2 - Background: Small airway dysfunction (SAD) is associated with impaired asthma control, but small airway physiology is not routinely assessed in clinical practice. Previously, we demonstrated impulse oscillometry (IOS)-defined small airway dysfunction (SAD) in dual responders (DRs) upon bronchoprovocation with various allergens. Aim: To compare lung physiology using spirometry and IOS following bronchoprovocation with methacholine (M) and inhaled house dust mite (HDM) extract in corticosteroid-naïve asthmatic subjects. Methods: Non-smoking, clinically stable HDM-allergic asthmatic subjects (18–55 years, FEV1 > 70% of pred.) underwent an M and inhaled HDM challenge on two separate days. Airway response was measured by IOS and spirometry, until a drop in FEV1 ≥ 20% (PC20) from post-diluent baseline (M), and up to 8 h post-allergen (HDM). Early (EAR) and late asthmatic response (LAR) to HDM were defined as ≥20% and ≥15% fall in FEV1 from post-diluent baseline during 0–3 h and 3–8 h post-challenge, respectively. IOS parameters (Rrs5, Rrs20, Rrs5-20, Xrs5, AX, Fres) were compared between mono-responders (MRs: EAR only) and dual responders (EAR + LAR). Correlations between maximal % change from baseline after the two airway challenges were calculated for both FEV1 and IOS parameters. Results: A total of 47 subjects were included (11 MRs; 36 DRs). FEV1 % predicted did not differ between MR and DR at baseline, but DR had lower median PC20M (0.84 (range 0.07–7.51) vs. MR (2.15 (0.53–11.29)); p = 0.036). During the LAR, DRs had higher IOS values than MRs. For IOS parameters (but not for FEV1), the maximal % change from baseline following M and HDM challenge were correlated. PC20M was inversely correlated with the % change in FEV1 and the % change in Xrs5 during the LAR (r= −0.443; p = 0.0018 and r= −0.389; p = 0.0075, respectively). Conclusions: During HDM-induced LAR, changes in small airway physiology can be non-invasively detected with IOS and are associated with increased airway hyperresponsiveness and changes in small airway physiology during methacholine challenge. DRs have a small airways phenotype, which reflects a more advanced airway disease.
AB - Background: Small airway dysfunction (SAD) is associated with impaired asthma control, but small airway physiology is not routinely assessed in clinical practice. Previously, we demonstrated impulse oscillometry (IOS)-defined small airway dysfunction (SAD) in dual responders (DRs) upon bronchoprovocation with various allergens. Aim: To compare lung physiology using spirometry and IOS following bronchoprovocation with methacholine (M) and inhaled house dust mite (HDM) extract in corticosteroid-naïve asthmatic subjects. Methods: Non-smoking, clinically stable HDM-allergic asthmatic subjects (18–55 years, FEV1 > 70% of pred.) underwent an M and inhaled HDM challenge on two separate days. Airway response was measured by IOS and spirometry, until a drop in FEV1 ≥ 20% (PC20) from post-diluent baseline (M), and up to 8 h post-allergen (HDM). Early (EAR) and late asthmatic response (LAR) to HDM were defined as ≥20% and ≥15% fall in FEV1 from post-diluent baseline during 0–3 h and 3–8 h post-challenge, respectively. IOS parameters (Rrs5, Rrs20, Rrs5-20, Xrs5, AX, Fres) were compared between mono-responders (MRs: EAR only) and dual responders (EAR + LAR). Correlations between maximal % change from baseline after the two airway challenges were calculated for both FEV1 and IOS parameters. Results: A total of 47 subjects were included (11 MRs; 36 DRs). FEV1 % predicted did not differ between MR and DR at baseline, but DR had lower median PC20M (0.84 (range 0.07–7.51) vs. MR (2.15 (0.53–11.29)); p = 0.036). During the LAR, DRs had higher IOS values than MRs. For IOS parameters (but not for FEV1), the maximal % change from baseline following M and HDM challenge were correlated. PC20M was inversely correlated with the % change in FEV1 and the % change in Xrs5 during the LAR (r= −0.443; p = 0.0018 and r= −0.389; p = 0.0075, respectively). Conclusions: During HDM-induced LAR, changes in small airway physiology can be non-invasively detected with IOS and are associated with increased airway hyperresponsiveness and changes in small airway physiology during methacholine challenge. DRs have a small airways phenotype, which reflects a more advanced airway disease.
KW - asthma
KW - small airways
KW - impulse oscillometry
KW - lung function
KW - methacholine challenge
KW - allergen bronchoprovocation test
U2 - 10.3390/jcm14030906
DO - 10.3390/jcm14030906
M3 - Article
C2 - 39941577
SN - 2077-0383
VL - 14
JO - Journal of Clinical Medicine
JF - Journal of Clinical Medicine
IS - 3
M1 - 906
ER -