Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes

Natasha Sienkiewicz, Szymon Jaroslawski, Susan Wyllie, Alan H. Fairlamb (Lead / Corresponding author)

    Research output: Contribution to journalArticlepeer-review

    61 Citations (Scopus)

    Abstract

    The phenotypes of single- (SKO) and double-knockout (DKO) lines of dihydrofolate reductase-thymidylate synthase (DHFR-TS) of bloodstream Trypanosoma brucei were evaluated in vitro and in vivo. Growth of SKO in vitro is identical to wild-type (WT) cells, whereas DKO has an absolute requirement for thymidine. Removal of thymidine from the medium triggers growth arrest in S phase, associated with gross morphological changes, followed by cell death after 60 h. DKO is unable to infect mice, whereas the virulence of SKO is similar to WT. Normal growth and virulence could be restored by transfection of DKO with T. brucei DHFR-TS, but not with Escherichia coli TS. As pteridine reductase (PTR1) levels are unchanged in SKO and DKO cells, PTR1 is not able to compensate for loss of DHFR activity. Drugs such as raltitrexed or methotrexate with structural similarity to folic acid are up to 300-fold more potent inhibitors of WT cultured in a novel low-folate medium, unlike hydrophobic antifols such as trimetrexate or pyrimethamine. DKO trypanosomes show reduced sensitivity to these inhibitors ranging from twofold for trimetrexate to > 10 000-fold for raltitrexed. These data demonstrate that DHFR-TS is essential for parasite survival and represents a promising target for drug discovery.

    Original languageEnglish
    Pages (from-to)520-533
    Number of pages14
    JournalMolecular Microbiology
    Volume69
    Issue number2
    DOIs
    Publication statusPublished - Jul 2008

    Keywords

    • SLEEPING SICKNESS PARASITE
    • REDUCED FOLATE CARRIER
    • PTERIDINE REDUCTASE
    • LEISHMANIA-MAJOR
    • PLASMODIUM-FALCIPARUM
    • BINDING-PROTEIN
    • ESCHERICHIA-COLI
    • BRUCEI-GAMBIENSE
    • CELL-LINES
    • 1 PTR1

    Fingerprint

    Dive into the research topics of 'Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes'. Together they form a unique fingerprint.

    Cite this