Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans

Michael Roberts (Lead / Corresponding author), Derek Driggs, Matthew Thorpe, Julian Gilbey, Michael Yeung, Stephan Ursprung, Angelica I. Aviles-Rivero, Christian Etmann, Cathal McCague, Lucian Beer, Jonathan R. Weir-McCall, Zhongzhao Teng, Effrossyni Gkrania-Klotsas, AIX-COVNET, James H. F. Rudd, Evis Sala, Carola-Bibiane Schönlieb

Research output: Contribution to journalArticlepeer-review

756 Citations (Scopus)
297 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans'. Together they form a unique fingerprint.

Keyphrases

Medicine and Dentistry