TY - JOUR
T1 - Concurrent visual and tactile steady-state evoked potentials index allocation of inter-modal attention
T2 - A frequency-tagging study
AU - Porcu, Emanuele
AU - Keitel, Christian
AU - Müller, Matthias M.
PY - 2013/11/27
Y1 - 2013/11/27
N2 - We investigated effects of inter-modal attention on concurrent visual and tactile stimulus processing by means of stimulus-driven oscillatory brain responses, so-called steady-state evoked potentials (SSEPs). To this end, we frequency-tagged a visual (7.5 Hz) and a tactile stimulus (20 Hz) and participants were cued, on a trial-by-trial basis, to attend to either vision or touch to perform a detection task in the cued modality. SSEPs driven by the stimulation comprised stimulus frequency-following (i.e. fundamental frequency) as well as frequency-doubling (i.e. second harmonic) responses. We observed that inter-modal attention to vision increased amplitude and phase synchrony of the fundamental frequency component of the visual SSEP while the second harmonic component showed an increase in phase synchrony, only. In contrast, inter-modal attention to touch increased SSEP amplitude of the second harmonic but not of the fundamental frequency, while leaving phase synchrony unaffected in both responses. Our results show that inter-modal attention generally influences concurrent stimulus processing in vision and touch, thus, extending earlier audio-visual findings to a visuo-tactile stimulus situation. The pattern of results, however, suggests differences in the neural implementation of inter-modal attentional influences on visual vs. tactile stimulus processing.
AB - We investigated effects of inter-modal attention on concurrent visual and tactile stimulus processing by means of stimulus-driven oscillatory brain responses, so-called steady-state evoked potentials (SSEPs). To this end, we frequency-tagged a visual (7.5 Hz) and a tactile stimulus (20 Hz) and participants were cued, on a trial-by-trial basis, to attend to either vision or touch to perform a detection task in the cued modality. SSEPs driven by the stimulation comprised stimulus frequency-following (i.e. fundamental frequency) as well as frequency-doubling (i.e. second harmonic) responses. We observed that inter-modal attention to vision increased amplitude and phase synchrony of the fundamental frequency component of the visual SSEP while the second harmonic component showed an increase in phase synchrony, only. In contrast, inter-modal attention to touch increased SSEP amplitude of the second harmonic but not of the fundamental frequency, while leaving phase synchrony unaffected in both responses. Our results show that inter-modal attention generally influences concurrent stimulus processing in vision and touch, thus, extending earlier audio-visual findings to a visuo-tactile stimulus situation. The pattern of results, however, suggests differences in the neural implementation of inter-modal attentional influences on visual vs. tactile stimulus processing.
U2 - 10.1016/j.neulet.2013.09.068
DO - 10.1016/j.neulet.2013.09.068
M3 - Article
SN - 0304-3940
VL - 556
SP - 113
EP - 117
JO - Neuroscience Letters
JF - Neuroscience Letters
ER -