TY - JOUR
T1 - Constitutive macropinocytosis allows TAP-dependent major histocompatibility compex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells
AU - Norbury, Christopher C.
AU - Chambers, Benedict J.
AU - Prescott, Alan R.
AU - Ljunggren, Hans Gustaf
AU - Watts, Colin
PY - 1997/1
Y1 - 1997/1
N2 - Dendritic cells expanded from mouse bone marrow (BMDC) with granulocyte/macrophage-colony-stimulating factor have potent T cell-stimulatory properties both in vitro and in vivo. This has been well documented for major histocompatibility complex (MHC) class II-restricted responses, and more recently using peptide-loaded and protein-pulsed DC for CD8 responses following adoptive transfer in mice. An unresolved question concerns the capacity of BMDC to present exogenous antigen on MHC class I molecules, an unconventional mode of MHC class I loading for which there is now considerable evidence, particularly in macrophages. Here, we show that BMDC exhibit high levels of macropinocytosis driven by constitutive membrane ruffling activity. Up to one-third of actively ruffling and macropinocytosing BMDC transferred pinocytosed horseradish peroxidase into the cytosol following a 15-min pulse, suggesting that they might be capable of presenting exogenous soluble antigen on MHC class I molecules. We show that BMDC presented exogenous ovalbumin to a T cell hybridoma more effectively, more rapidly, and at lower exogenous antigen concentrations than BM macrophages on a cell-for-cell basis. Presentation was TAP dependent, brefeldin A sensitive, and blocked by inhibitors of proteasomal processing, demonstrating use of the classical MHC class I pathway. Although effective presentation of exogenous antigen by BMDC occurred in the absence of agents which stimulate macropinocytosis, treatment with phorbol myristate acetate (PMA) enhanced both pinocytosis and MHC class I presentation by BMDC. Finally, PMA-stimulated BMDC exposed to exogenous ovalbumin in vitro were able to prime an antigen-specific cytotoxic T lymphocyte response following adoptive transfer in vivo.
AB - Dendritic cells expanded from mouse bone marrow (BMDC) with granulocyte/macrophage-colony-stimulating factor have potent T cell-stimulatory properties both in vitro and in vivo. This has been well documented for major histocompatibility complex (MHC) class II-restricted responses, and more recently using peptide-loaded and protein-pulsed DC for CD8 responses following adoptive transfer in mice. An unresolved question concerns the capacity of BMDC to present exogenous antigen on MHC class I molecules, an unconventional mode of MHC class I loading for which there is now considerable evidence, particularly in macrophages. Here, we show that BMDC exhibit high levels of macropinocytosis driven by constitutive membrane ruffling activity. Up to one-third of actively ruffling and macropinocytosing BMDC transferred pinocytosed horseradish peroxidase into the cytosol following a 15-min pulse, suggesting that they might be capable of presenting exogenous soluble antigen on MHC class I molecules. We show that BMDC presented exogenous ovalbumin to a T cell hybridoma more effectively, more rapidly, and at lower exogenous antigen concentrations than BM macrophages on a cell-for-cell basis. Presentation was TAP dependent, brefeldin A sensitive, and blocked by inhibitors of proteasomal processing, demonstrating use of the classical MHC class I pathway. Although effective presentation of exogenous antigen by BMDC occurred in the absence of agents which stimulate macropinocytosis, treatment with phorbol myristate acetate (PMA) enhanced both pinocytosis and MHC class I presentation by BMDC. Finally, PMA-stimulated BMDC exposed to exogenous ovalbumin in vitro were able to prime an antigen-specific cytotoxic T lymphocyte response following adoptive transfer in vivo.
KW - Exogenous antigen
KW - Macropinocytosis
KW - Major histocompatibility complex class
KW - TAP
UR - http://www.scopus.com/inward/record.url?scp=0031030792&partnerID=8YFLogxK
U2 - 10.1002/eji.1830270141
DO - 10.1002/eji.1830270141
M3 - Article
C2 - 9022030
AN - SCOPUS:0031030792
SN - 0014-2980
VL - 27
SP - 280
EP - 288
JO - European Journal of Immunology
JF - European Journal of Immunology
IS - 1
ER -