Abstract
We report a novel algorithm to locate vascular leakage and ischemia in retinal angiographic image sequences leveraging contextual knowledge of co-occurring pathologies. The key contributions are the use of spatio-temporal features exploiting the evolution of intensity levels over the sequence and contextual knowledge to detect ischemia. The specific nature of these diseased regions is determined using an AdaBoost learning algorithm. Training was performed with a varied set of 16 ground-truth image sequences, and testing on unseen Images. The images used were acquired with an Optos ultra-wide-field scanning laser ophthalmoscope. Evaluation against manual annotations demonstrates successful location of 93% of leakage regions and 70% of ischemic regions.
Original language | English |
---|---|
Title of host publication | 2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8 |
Place of Publication | NEW YORK |
Publisher | IEEE Computer Society |
Pages | 5437-5440 |
Number of pages | 4 |
ISBN (Print) | 978-1-4244-1814-5 |
Publication status | Published - 2008 |
Event | 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society - Vancouver, Canada Duration: 20 Aug 2008 → 25 Aug 2008 |
Conference
Conference | 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 20/08/08 → 25/08/08 |
Keywords
- FLUORESCEIN ANGIOGRAMS
- OCULAR FUNDUS
- LEAKAGE
- QUANTIFICATION
- IMAGES