TY - JOUR
T1 - Crystal structure of activated ModE reveals conformational changes involving both oxyanion and DNA-binding domains
AU - Schuttelkopf, Alexander W.
AU - Boxer, David H.
AU - Hunter, William N.
N1 - dc.publisher: Elsevier
PY - 2003
Y1 - 2003
N2 - ModE is a bacterial transcriptional regulator that orchestrates many aspects of molybdenum metabolism by binding to specific DNA sequences in a molybdate-dependent fashion. We present the crystal structure of Escherichia coli ModE in complex with molybdate, which was determined at 2.75 Å from a merohedrally twinned crystal (twin fraction˜0.30) with space group P43. We now have structures of ModE in both its “switched on” (ligand-bound) and “switched off” (apo) states. Comparison with the apo structure shows that ligand binding leads to extensive conformational changes not only in the molybdate-binding domain, but also in the DNA-binding domain. The most obvious difference is the loss of the pronounced asymmetry between the two chains of the ModE dimer, which had been a characteristic property of the apo structure. Another major change concerns the relative orientation of the two DNA-interacting winged helix-turn-helix motifs. Manual docking of an idealized DNA structure suggests that this conformational change should improve DNA binding of the activated molybdate-bound ModE.
AB - ModE is a bacterial transcriptional regulator that orchestrates many aspects of molybdenum metabolism by binding to specific DNA sequences in a molybdate-dependent fashion. We present the crystal structure of Escherichia coli ModE in complex with molybdate, which was determined at 2.75 Å from a merohedrally twinned crystal (twin fraction˜0.30) with space group P43. We now have structures of ModE in both its “switched on” (ligand-bound) and “switched off” (apo) states. Comparison with the apo structure shows that ligand binding leads to extensive conformational changes not only in the molybdate-binding domain, but also in the DNA-binding domain. The most obvious difference is the loss of the pronounced asymmetry between the two chains of the ModE dimer, which had been a characteristic property of the apo structure. Another major change concerns the relative orientation of the two DNA-interacting winged helix-turn-helix motifs. Manual docking of an idealized DNA structure suggests that this conformational change should improve DNA binding of the activated molybdate-bound ModE.
U2 - 10.1016/S0022-2836(02)01358-X
DO - 10.1016/S0022-2836(02)01358-X
M3 - Article
SN - 0022-2836
VL - 326
SP - 761
EP - 767
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
IS - 3
ER -