Research output per year
Research output per year
Anna J. Higgins, Alex J. Flynn, Anaïs Marconnet, Laura J. Musgrove, Vincent L. G. Postis, Jonathan D. Lippiat, Chun-wa Chung, Tom Ceska, Manuela Zoonens, Frank Sobott, Stephen P. Muench
Research output: Contribution to journal › Article › peer-review
Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract Escherichia coli AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.
Original language | English |
---|---|
Article number | 1337 |
Number of pages | 9 |
Journal | Communications Biology |
Volume | 4 |
DOIs | |
Publication status | Published - 25 Nov 2021 |
Research output: Other contribution