TY - JOUR
T1 - DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia
AU - Legrand, Julien M. D.
AU - Chan, Ai-Leen
AU - La, Hue M.
AU - Rossello, Fernando J.
AU - Änkö, Minna-Liisa
AU - Fuller-Pace, Frances V.
AU - Hobbs, Robin M.
N1 - This work was supported by the Australian Research Council (ARC) Stem Cells Australia Special Research Initiative and NHMRC Project Grant APP1078042. R.M.H. was supported by an ARC Future Fellowship. The Australian Regenerative Medicine Institute is supported by grants from the State Government of Victoria and the Australian Government.
PY - 2019/5/23
Y1 - 2019/5/23
N2 - Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia.
AB - Mammalian spermatogenesis is sustained by mitotic germ cells with self-renewal potential known as undifferentiated spermatogonia. Maintenance of undifferentiated spermatogonia and spermatogenesis is dependent on tightly co-ordinated transcriptional and post-transcriptional mechanisms. The RNA helicase DDX5 is expressed by spermatogonia but roles in spermatogenesis are unexplored. Using an inducible knockout mouse model, we characterise an essential role for DDX5 in spermatogonial maintenance and show that Ddx5 is indispensable for male fertility. We demonstrate that DDX5 regulates appropriate splicing of key genes necessary for spermatogenesis. Moreover, DDX5 regulates expression of cell cycle genes in undifferentiated spermatogonia post-transcriptionally and is required for cell proliferation and survival. DDX5 can also act as a transcriptional co-activator and we demonstrate that DDX5 interacts with PLZF, a transcription factor required for germline maintenance, to co-regulate select target genes. Combined, our data reveal a critical multifunctional role for DDX5 in regulating gene expression programmes and activity of undifferentiated spermatogonia.
U2 - 10.1038/s41467-019-09972-7
DO - 10.1038/s41467-019-09972-7
M3 - Article
C2 - 31123254
SN - 2041-1723
VL - 10
SP - 1
EP - 21
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 2278
ER -