TY - UNPB
T1 - DeepFL-IQA
T2 - Weak supervision for deep IQA feature learning
AU - Lin, Hanhe
AU - Hosu, Vlad
AU - Saupe, Dietmar
N1 - Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project-id 251654672 – TRR 161 (Project A05).
PY - 2020/1/20
Y1 - 2020/1/20
N2 - Multi-level deep-features have been driving state-of-the-art methods for aesthetics and image quality assessment (IQA). However, most IQA benchmarks are comprised of artificially distorted images, for which features derived from ImageNet under-perform. We propose a new IQA dataset and a weakly supervised feature learning approach to train features more suitable for IQA of artificially distorted images. The dataset, KADIS-700k, is far more extensive than similar works, consisting of 140,000 pristine images, 25 distortions types, totaling 700k distorted versions. Our weakly supervised feature learning is designed as a multi-task learning type training, using eleven existing full-reference IQA metrics as proxies for differential mean opinion scores. We also introduce a benchmark database, KADID-10k, of artificially degraded images, each subjectively annotated by 30 crowd workers. We make use of our derived image feature vectors for (no-reference) image quality assessment by training and testing a shallow regression network on this database and five other benchmark IQA databases. Our method, termed DeepFL-IQA, performs better than other feature-based no-reference IQA methods and also better than all tested full-reference IQA methods on KADID-10k. For the other five benchmark IQA databases, DeepFL-IQA matches the performance of the best existing end-to-end deep learning-based methods on average.
AB - Multi-level deep-features have been driving state-of-the-art methods for aesthetics and image quality assessment (IQA). However, most IQA benchmarks are comprised of artificially distorted images, for which features derived from ImageNet under-perform. We propose a new IQA dataset and a weakly supervised feature learning approach to train features more suitable for IQA of artificially distorted images. The dataset, KADIS-700k, is far more extensive than similar works, consisting of 140,000 pristine images, 25 distortions types, totaling 700k distorted versions. Our weakly supervised feature learning is designed as a multi-task learning type training, using eleven existing full-reference IQA metrics as proxies for differential mean opinion scores. We also introduce a benchmark database, KADID-10k, of artificially degraded images, each subjectively annotated by 30 crowd workers. We make use of our derived image feature vectors for (no-reference) image quality assessment by training and testing a shallow regression network on this database and five other benchmark IQA databases. Our method, termed DeepFL-IQA, performs better than other feature-based no-reference IQA methods and also better than all tested full-reference IQA methods on KADID-10k. For the other five benchmark IQA databases, DeepFL-IQA matches the performance of the best existing end-to-end deep learning-based methods on average.
KW - Image quality assessment
KW - Deep learning
KW - Convolutional neural network
KW - Feature learning
KW - No-reference
U2 - 10.48550/arXiv.2001.08113
DO - 10.48550/arXiv.2001.08113
M3 - Preprint
T3 - arXiv preprint arXiv:2001.08113
BT - DeepFL-IQA
PB - arXiv
CY - Cornell University
ER -