Projects per year
Abstract
The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GUin L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulatedGUwas sensitive to PI3K inhibition, whereas that induced by Met was not. Met and its related biguanide, phenformin, stimulated AMPK activation/phosphorylation to a level comparable with that induced by the AMPK activator, 5-amino-1-ß-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). However, the increase in GU elicited by AICAR was significantly lower than that induced by either biguanide. Expression of a constitutively active AMPK mimicked the effects of AICAR on GU, whereas a dominant interferingAMPK or shRNA silencing of AMPK prevented AICAR-stimulated GU and Met-induced AMPK signaling but only repressed biguanide- stimulated GU by ~20%. Consistent with this, analysis of GU in muscle cells from a1 /a2 AMPK-deficient mice revealed a significant retention of Met-stimulated GU, being reduced by ~35% compared with that of wild type cells. Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs.
Original language | English |
---|---|
Pages (from-to) | 20088-20099 |
Number of pages | 12 |
Journal | Journal of Biological Chemistry |
Volume | 287 |
Issue number | 24 |
DOIs | |
Publication status | Published - 8 Jun 2012 |
Fingerprint
Dive into the research topics of 'Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Non-canonical Pathways for Regulation of AMPK (Senior Investigator Award)
Hardie, G. (Investigator)
1/04/12 → 30/09/17
Project: Research
-
Aref#d: 21320. Antagonism of PI 3-Kinase Signalling by PTEN and SHIP2 (Programme Grant)
Downes, P. (Investigator) & Leslie, N. (Investigator)
1/10/09 → 30/09/14
Project: Research