Abstract
The existence of solutions of degenerate quasilinear pseudoparabolic equations, where the term ∂t u is replace by ∂t b (u), with memory terms and quasilinear variational inequalities is shown. The existence of solutions of equations is proved under the assumption that the nonlinear function b is monotone and a gradient of a convex, continuously differentiable function. The uniqueness is proved for Lipschitz-continuous elliptic parts. The existence of solutions of quasilinear variational inequalities is proved under stronger assumptions, namely, the nonlinear function defining the elliptic part is assumed to be a gradient and the function b to be Lipschitz continuous.
Original language | English |
---|---|
Pages (from-to) | 2653-2675 |
Number of pages | 23 |
Journal | Nonlinear Analysis: Theory, Methods and Applications |
Volume | 66 |
Issue number | 12 |
DOIs | |
Publication status | Published - 15 Jun 2007 |
Keywords
- Degenerate parabolic equations
- Equations with memory terms
- Pseudoparabolic equations
ASJC Scopus subject areas
- General Mathematics
- Analysis
- Applied Mathematics