Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF

Sean G. Brown, Stephen J. Publicover, Steven Mansell, Polina V. Lishko, Hannah L. Williams, Mythili Ramalingam, Stuart M. Wilson, Christopher L R Barratt (Lead / Corresponding author), Keith A. Sutton, Sarah Martins Da Silva

Research output: Contribution to journalArticle

22 Citations (Scopus)
168 Downloads (Pure)

Abstract

STUDY QUESTION: Are significant abnormalities in outward (K+) conductance and resting membrane potential (Vm) present in the spermatozoa of patients undertaking IVF and ICSI and if so, what is their functional effect on fertilization success? 

SUMMARY ANSWER: Negligible outward conductance (≈5% of patients) or an enhanced inward conductance (≈4% of patients), both of which caused depolarization of Vm, were associated with a low rate of fertilization following IVF. 

WHAT IS KNOWN ALREADY Sperm-specific potassium channel knockout mice are infertile with defects in sperm function, suggesting that these channels are essential for fertility. These observations suggest that malfunction of K+ channels in human spermatozoa might contribute significantly to the occurrence of subfertility in men. However, remarkably little is known of the nature of K+ channels in human spermatozoa or the incidence and functional consequences of K+ channel defects. 

STUDY DESIGN, SIZE AND DURATION Spermatozoa were obtained from healthy volunteer research donors and subfertile IVF and ICSI patients attending a hospital assisted reproductive techniques clinic between May 2013 and December 2015. In total, 40 IVF patients, 41 ICSI patients and 26 normozoospermic donors took part in the study. 

PARTICIPANTS/MATERIALS, SETTING, METHODS Samples were examined using electrophysiology (whole-cell patch clamping). Where abnormal electrophysiological characteristics were identified, spermatozoa were further examined for Ca2+ influx induced by progesterone and penetration into viscous media if sufficient sample was available. Full exome sequencing was performed to specifically evaluate potassium calcium-activated channel subfamily M α 1 (KCNMA1), potassium calcium-activated channel subfamily U member 1 (KCNU1) and leucine-rich repeat containing 52 (LRRC52) genes and others associated with K+ signalling. In IVF patients, comparison with fertilization rates was done to assess the functional significance of the electrophysiological abnormalities.

MAIN RESULTS AND THE ROLE OF CHANCE Patch clamp electrophysiology was used to assess outward (K+) conductance and resting membrane potential (Vm) and signalling/motility assays were used to assess functional characteristics of sperm from IVF and ICSI patient samples. The mean Vm and outward membrane conductance in sperm from IVF and ICSI patients were not significantly different from those of control (donor) sperm prepared under the same conditions, but variation between individuals was significantly greater (P<0.02) with a large number of outliers (>25%). In particular, in ≈10% of patients (7/81), we observed either a negligible outward conductance (4 patients) or an enhanced inward current (3 patients), both of which caused depolarization of Vm. Analysis of clinical data from the IVF patients showed significant association of depolarized Vm (≥0 mV) with low fertilization rate (P= 0.012). Spermatozoa with electrophysiological abnormities (conductance and Vm) responded normally to progesterone with elevation of [Ca2+]i and penetration of viscous medium, indicating retention of cation channel of sperm (CatSper) channel function.

LIMITATIONS, REASONS FOR CAUTION For practical, technical, ethical and logistical reasons, we could not obtain sufficient additional semen samples from men with conductance abnormalities to establish the cause of the conductance defects. Full exome sequencing was only available in two men with conductance defects. 

WIDER IMPLICATIONS OF THE FINDINGS These data add significantly to the understanding of the role of ion channels in human sperm function and its impact on male fertility. Impaired potassium channel conductance (Gm) and/or Vm regulation is both common and complex in human spermatozoa and importantly is associated with impaired fertilization capacity when the Vm of cells is completely depolarized. 

STUDY FUNDING/COMPETING INTEREST(S) The majority of the data were obtained using funding from MRC project grants (#MR/K013343/1, MR/012492/1). Additional funding was provided by NHS Tayside, TENOVUS, Chief Scientist Office NRS Fellowship and University of Abertay. The authors declare that there is no conflict of interest. 

TRIAL REGISTRATION NUMBER Not applicable.

Original languageEnglish
Pages (from-to)1147-1157
Number of pages11
JournalHuman Reproduction
Volume31
Issue number6
Early online date6 Apr 2016
DOIs
Publication statusPublished - 15 Jun 2016

Keywords

  • CatSper
  • IVF
  • male infertility
  • patch clamp electrophysiology
  • potassium channel
  • Slo1
  • Slo3
  • sperm dysfunction
  • spermatozoa

Fingerprint Dive into the research topics of 'Depolarization of sperm membrane potential is a common feature of men with subfertility and is associated with low fertilization rate at IVF'. Together they form a unique fingerprint.

  • Projects

    Profiles

    No photo of Christopher Barratt

    Barratt, Christopher

    Person: Academic

    No photo of Sarah Martins Da Silva

    Martins Da Silva, Sarah

    Person: Academic

    Cite this